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Abstract. We propose a computationally feasible way of deriving the identified set of

parameter values in models with multiple equilibria, with particular emphasis on oligopoly

entry models. This is achieved through an equivalence result between the existence of an
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ties, and through an appeal to efficient linear programming techniques.
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Introduction

The empirical study of imperfectly competitive markets based on game theoretic models is complicated by

the presence of multiple equilibria. As noted in Jovanovic (1989), the existence of multiple equilibria generally

leads to a failure of identification of the structural parameters governing the model. Berry and Tamer (2006)

and Ackerberg, Benkard, Berry, and Pakes (2007) give an account of the various ways this identification

issue was approached in the literature, where identification of structural parameters is achieved through

equilibrium refinements, shape restrictions, informational assumptions or the specification of equilibrium

selection mechanisms. An alternative approach is to eschew identification strategies and base inference

purely on the identified features of the models with multiple equilibria, which are sets of values rather than

a single value of the structural parameter vector. This approach is taken in the context of oligopoly entry

models by Andrews, Berry, and Jia (2003) and Ciliberto and Tamer (2006). The inferential method they

use, however, relies on a set of restrictions which is not guaranteed to exhaust all the restrictions embodied

in the model, and hence leads to more conservative inference than could be achieved. This paper proposes

a computationally feasible way of recovering the identified feature of a model with multiple equilibria, with

a specific application to inference in oligopoly entry models.

We first note that the likelihood implied by a model with multiple equilibria can be represented by a

non additive set function called a Choquet capacity functional. Seminal work on nonadditive likelihoods can

be found in Manski (1990) and Heckman, Smith, and Clements (1997) among others. This nonadditive

likelihood can be refined to a likelihood represented by a probability measure if there exists a mechanism

that picks outcomes among the admissible equilibria in the region of multiplicity. We give a formal definition

of an equilibrium selection mechanism, and call such a mechanism compatible with the data if the likelihood

of the model augmented with such a mechanism is equal to the probabilities observed in the data. The

identified feature of the model therefore is the set of parameter values such that there exists an equilibrium

selection mechanism compatible with the data. The first main result of this paper is the equivalence between

the latter condition and the actual probability of observed outcomes belonging to the core of the likelihood

predicted by the model, where the core is a well known and studied notion in economics since the word

was coined in Gillies (1953). This results allows the computation of the identified feature of models with

multiple equilibria and a finite number of observable outcomes, as it reduces the problem to that of checking a

finite number of moment inequalities. A related representation was developed independently by Beresteanu,

Molchanov, and Molinari (2008) who emphasize the characterization of the identified set as an Aumann

integral.

The computational burden remains high in situations with a large number of observable outcomes, since

the number of inequalities to be checked is equal to the number of subsets of the set of observable outcomes.

When the set of observable outcomes is infinite, the problem remains infinite dimensional. Galichon and
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Henry (2006b) and Ekeland, Galichon, and Henry (2008) include results pertaining to that case. To lift the

remaining computational burden, we propose two alternative strategies. First we propose to use efficient

linear programming methods to determine whether the observed probabilities are in the core of the model

likelihood. Second, we introduce the notion of core determining classes, which are suitably low cardinality

classes of sets that are sufficient to characterize the core, and we provide some results to exhibit such core

determining classes in practice. The method is illustrated on oligopoly entry examples proposed in Tamer

(2003) and Berry and Tamer (2006).

Beyond the identification issue of computing the identified set given the knowledge of the true distribution

of observable variables, the inference issue of constructing confidence regions for structural parameters in

models with multiple equilibria is taken up in Galichon and Henry (2008) and Galichon and Henry (2006a) to

complement the seminal contribution of Chernozhukov, Hong, and Tamer (2007). Related work on inference

in partially identified models include Manski and Tamer (2002), Imbens and Manski (2004), Beresteanu and

Molinari (2008), Romano and Shaikh (2008), Rosen (2008), Andrews and Soares (2007), Canay (2007), Fan

(2008) among many others.

The remainder of the paper is organized as follows. Section 1.1 describes the framework and general

results, while section 1.2 specializes and illustrates them on the example of oligopoly entry models. Section 2

introduces the notion of core determining classes and results necessary for their construction. Section 3 shows

how to use efficient linear programming methods to compute the identified feature of a model with multiple

equilibria. Section 4 illustrates the two methods on an oligopoly entry game with two types of players. The

last section concludes, and proofs of the results are collected in an appendix.

1. Identified features of models with multiple equilibria

1.1. Identified parameter sets in general models with multiple equilibria. The general framework

is that of Jovanovic (1989). We consider three types of economic variables. Outcome variables Y , exoge-

nous explanatory variables X, and latent variables, or random shocks, ε. Outcome variables and latent

variables are assumed to belong to complete and separable metric spaces, so that both outcomes and latent

variables could be discrete, continuous, they could be probability distributions or stochastic processes. The

economic model consists in a set of restrictions on the joint behaviour of the variables listed above. These

restrictions may be induced by assumptions of rationality of agents, and they generally depend on a set of

unknown structural parameters θ. Without loss of generality, the model may be formalized as a measurable

correspondence (defined in assumption 1 below) between the latent variables ε and the outcome variables

Y indexed by the exogenous variables X and the vector of parameters θ. We call this correspondence G,

and write Y ∈ G(ε|X; θ) to indicate admissible values of Y given values of ε, X and θ. The econometrician

will be assumed to have access to a sample of independent and identically distributed vectors (Y, X), and

the problem considered is that of estimating the vector of parameters θ. The latent variables ε is supposed
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to be distributed according to a parametric distribution νθ, where the indexing is meant to indicate that

the unknown parameters that enter in the distribution of latent variables are contained in the vector θ of

parameters to the estimated. We collect these assumptions next.

Assumption 1. An independent and identically distributed sample of copies of the random vector (Y, X)

is available. The observable outcomes Y conditionally distributed according to the probability distribution

P (·|X) on Y, a Polish space (i.e. a complete and separable metric space) endowed with its Borel σ-algebra of

subsets B) are related to unobservable variables ε according to the model Y ∈ G(ε|X; θ), where θ belongs to

an open subset Θ of Rdθ , ε is distributed according to the probability measure νθ on U (also Polish endowed

with its Borel σ-algebra of subsets) independently of X, and G is a measurable correspondence1, i.e. such

that for all open subsets A of Y, G−1(A|X; θ) := {ε ∈ U : G(ε|X; θ) ∩ A 6= ∅} is measurable (a measurable

correspondence is also called random correspondence or random set, and the requirement is very mild) for

almost all X and for all θ ∈ Θ. Finally, the variables (Y, X, ε) are defined on the same underlying probability

space (Ω,F ,P).

Example 1. To illustrate assumption 1, we consider a simple game proposed by Jovanovic (1989). There

are two firms with profit functions π1(Y1, Y2, ε1, ε2; θ) = (θY2 − ε2)1{Y1=1} and π2(Y1, Y2, ε1, ε2; θ) = (θY1 −
ε1)1{Y2=1}, where Yi ∈ {0, 1} is firm i’s action, and ε = (ε1, ε2)

′ are exogenous costs. The firms know their

costs; the analyst, however, knows only that ε is uniformly distributed on [0, 1]2, and that the structural

parameter θ is in (0, 1]. There are two pure strategy Nash equilibria. The first is Y1 = Y2 = 0 for all

ε ∈ [0, 1]2. The second is Y1 = Y2 = 1 for all ε ∈ [0, θ]2 and Y1 = Y2 = 0 otherwise. Hence the model is

described by the correspondence: G(ε; θ) = {(0, 0), (1, 1)} for all ε ∈ [0, θ]2, and G(ε; θ) = {(0, 0)} otherwise.

To conduct inference on the parameter vector θ, one first needs to determine the identified features of the

model. Because the correspondence G may be multi-valued due to the presence of multiple equilibria, the

outcomes may not be uniquely determined by the latent variable. In such cases, the likelihood of an outcome

falling in the subset A of Y predicted by the model is L(A|X; θ) = νθ(G
−1(A|X; θ)) = P(G(ε|X; θ)∩A 6= ∅|X)

(We use both the notation used in our previous version, Galichon and Henry (2006b), and the notation used

in Berry and Tamer (2006) to clarify the equivalence between concepts discussed in the former and the latter).

Because of multiple equilibria, this likelihood may sum to more than one, as we may have A1 ∩A2 = ∅, and

yet G−1(A|X; θ) ∩ G−1(A|X; θ) 6= ∅, so that we may have L(A ∪ B|X; θ) < L(A|X; θ) + L(B|X; θ). The

set function A 7→ νθ(G
−1(A|X; θ)) is generally not additive, and is called a Choquet capacity functional (see

Choquet (1954)).

1In the previous version circulated, Galichon and Henry (2006b), we used the notation U for ε and Γ

for G−1.
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Definition 1 (Choquet capacity functional). Let G be a measurable correspondence from U to Y, and let

ν be a countably additive probability measure on U . The set function A 7→ ν(G−1(A)) (with G−1 defined in

assumption 1) for all A measurable set in Y is called a Choquet capacity functional on Y.

Example 1 continued In example 1, νθ is the uniform distribution on [0, 1]2 and the Choquet capacity

functional νθG
−1 gives value νθG

−1({(0, 0)}) = νθ([0, 1]2) = 1 to the set {(0, 0)} and value νθG
−1({(1, 1)}) =

νθ([0, θ]2) = θ2 to the set {(1, 1)}. Hence it is immediately apparent that the Choquet capacity functional

νθG
−1 is a set function that is not additive, as it sums to more than 1.

As discussed in Berry and Tamer (2006) and Ciliberto and Tamer (2006), the model with multiple

equilibria can be completed with an equilibrium selection mechanism. Following Jovanovic (1989) and Berry

and Tamer (2006) (See for instance the formulation (2.20) page 66 of Berry and Tamer (2006)), we define

an equilibrium selection mechanism as a conditional distribution πY |ε,X over equilibrium outcomes Y in the

regions of multiplicity. By construction, an equilibrium selection is allowed to depend on the latent variables

ε even after conditioning on X. This is summarized in the following definition.

Definition 2 (Equilibrium selection mechanism). An equilibrium selection mechanism is a conditional prob-

ability π(Y |ε, X) for Y conditionally on ε, such that the selected value of the outcome variable is actually an

equilibrium, or more formally, such that π(.|ε, X) has support G(ε|X; θ).

As explained in Berry and Tamer (2006) and Ciliberto and Tamer (2006), “the identified features of the

model is the set of parameters for which there exists a selection mechanism such that the probabilities of

outcomes predicted by the model are equal to the probabilities obtained from the data.”

Definition 3 (Compatible equilibrium selection mechanism). The equilibrium selection mechanism π(.|ε, X)

is compatible with the data if the probabilities observed in the data are equal to the probabilities predicted by

the equilibrium selection mechanism, or more formally (see for instance the formulation (3.24) page 72 of

Berry and Tamer (2006)) if for all A measurable subset of Y, P (A|X) =
∫
U π(A|ε, X)νθ(dε).

Hence the identified set is the set of parameters θ such that there exists an equilibrium selection mechanism

compatible with the data.

Definition 4 (Identified set). We call identified set (sometimes called sharp identified set) the set ΘI of

θ ∈ Θ such that there exists an equilibrium selection mechanism compatible with the data.

The definition above is not an operational definition, in the sense that it does not alow the computation of

the identified set based on the knowledge of the probabilities in the data because the conditional distribution

π is an infinite dimensional nuisance parameter. We now set out to show how to reduce the dimensionality

of the problem with an appeal to mass transportation methods (see Rachev and Rüschendorf (1998) and
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Villani (2003) for expositions of the theory). Our equivalent formulation of the identified set is based on an

appeal to the notion of core of the Choquet capacity functional introduced in definition 1.

Definition 5 (Core of a Choquet capacity functional). The core of a Choquet capacity functional ρ on Y is

the collection of probability distributions Q on Y such that for all A measurable subset of Y, Q(A) ≤ ρ(A).

Example 1 continued In example 1, the core of the Choquet capacity functional νθG
−1 is the set of proba-

bilities P for the observed outcomes (0, 0) and (1, 1) such that P ({(0, 0)}) ≤ νθG
−1({(0, 0)}) = νθ([0, 1]2) = 1

and P ({(1, 1)}) ≤ νθG
−1({(1, 1)}) = νθ([0, θ]2) = θ2.

The result we propose next2 shows the equivalence between the existence of a compatible equilibrium

selection mechanism and the fact that the true distribution of the data belongs to the core of the Choquet

capacity functional that characterizes the likelihood predicted by the model (which we shall call core of the

likelihood predicted by the model).

Theorem 1. The identified set ΘI is equal to the set of parameters such that the true distribution of the

observable variables lies in the core of the likelihood predicted by the model. Hence

ΘI = {θ ∈ Θ : ∀A ∈ B, P (A|X) ≤ νθ(G
−1(A|X; θ)), X − a.s.}

= {θ ∈ Θ : ∀A ∈ B, P(Y ∈ A|X) ≤ P(G(ε|X; θ) ∩A 6= ∅|X), X − a.s.}.

Example 1 continued In example 1, the identified set is the set of values for θ such that p ≤ θ2 and

1− p ≤ 1 where p = P((Y1, Y2) = (1, 1)) is the true probability that the observable variable takes the value

(1, 1), i.e. that both firms enter the market. Hence, ΘI = [
√

p, 1].

The first thing to note from this theorem is that the problem of computing the identified set has been

transformed into a finite dimensional problem in the special case where Y is a finite set (or equivalently, the

support of the distribution P of observable outcomes has finite cardinality). Indeed, in the latter case, the

problem of computing the identified set is reduced to the problem of computing a finite number of inequalities,

i.e. P(Y ∈ A|X) ≤ P(G(ε|X; θ) ∩ A 6= ∅) for each subset A of Y. However, in cases where the cardinality

of Y is large, then the number of inequalities to be checked is 2Card(Y), and the computational burden is

only partially lifted, and the second section of the paper is devoted to the analysis of core determining

classes, which are classes of test sets that allow a reduction in the number of inequalities to be checked in

the computation of the identified set. First we turn to the specialization of our results and concepts to the

case of oligopoly entry models, and illustrate them with a duopoly entry game extensively studied in the

literature.

2This result appeared as equivalence between (ii’) and (iv’) in theorem 1’ of the previous version circulated

Galichon and Henry (2006b).
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1.2. Models of market entry. A leading special example of the framework above is that of empirical

models of oligopoly entry, proposed in Bresnahan and Reiss (1990) and Berry (1992), and considered

in the framework of partial identification by Tamer (2003), Andrews, Berry, and Jia (2003), Berry and

Tamer (2006), Ciliberto and Tamer (2006) and Pakes, Porter, Ho, and Ishii (2004) among others. In this

setup, economic agents are firms who decide whether of not to enter a market. Markets are indexed by

m, m = 1, . . . , M and firms that could potentially enter the market are indexed by i, i = 1, . . . , J . Yim

is firm i’s strategy in market m, and it is equal to 1 if firm i enters market m, and zero otherwise. Ym

denotes the vector (Y1m, . . . , YJm)t of strategies of all the firms. In standard notation, Y−im denotes the

vector of strategies of all firms except firm i. In models of oligopoly entry, the profit πim of firm i in

market m is allowed to depend on strategies Y−im of other firms, as well as on a set of profit shifters Xim

that are observed by all firms and the econometrician, a profit shifter εim that is observed by all the firms

but not by the econometrician, and a vector of unknown structural parameters, so that it can be written

πim(Ym, Xim, εim; θ) = πim(Yim, Y−im, Xim, εim; θ). If, for instance, firms are assumed to play Nash equilib-

ria in pure strategies3 in market m, their strategies Yim are such that they yield higher profits than 1− Yim

given other firms’ strategies Y−im. So the restrictions induced on the strategies and latent profit shifters are

πim(Yim, Y−im, Xim, εim; θ) ≥ πim(1 − Yim, Y−im, Xim, εim; θ) for all i = 1, . . . , J . Hence the model can be

written Ym ∈ G(εm|Xm; θ), where Xm denotes the matrix of observed profit shifters for firms i = 1, . . . , J ,

εm denotes the vector of latent profit shifters for firms i = 1, . . . , J , and the correspondence G is defined

by G(ε|X; θ) = {Y : πi(Yi, Y−i, Xi, εi; θ) ≥ πi(1 − Yi, Y−i, Xi, εi; θ); all i = 1, . . . , J}, where the index m is

dropped when considering a generic market.

Pilot 1. For illustration purposes, we describe the special case of this framework extensively studied in Tamer

(2003), Berry and Tamer (2006) and Ciliberto and Tamer (2006). Two firms are present in the industry, so

that J = 2, and a firm decides to enter the market m if it makes a non negative profit in a pure strategy Nash

equilibrium. Profit functions are supposed to have the following linear form πim = αiXim +δ−iY−im +εim, so

that Yim = 1 if αiXim+δ−iY−im+εim ≥ 0 and zero otherwise. As noted in Tamer (2003), if monopoly profits

are larger than duopoly profits, i.e. δi < 0, for i = 1, 2, and if −αiXim ≤ εim ≤ −αiXim − δ−i, i = 1, 2,

then there are multiple equilibria, since the model predicts either Y1m = 1 and Y2m = 0 or Y1m = 0 and

Y2m = 1. The correspondence G(εm|Xm; θ), where θ contains αi, δi, i = 1, 2 is represented in figure 1. Note

that G is multi-valued in the rectangle with lower left corner (−α1X1m,−α2X2m) and upper-right corner

(−α1X1m − δ2,−α2X2m − δ1).

The model thus described is incomplete in the sense that more information is required in the regions

of multiplicity to determine which equilibrium will be selected. Without knowledge of such an equilibrium

3As noted by Francesca Molinari, equilibria in mixed strategies can be handled identically. However, we

concentrate here on pure strategies for illustration purposes.
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ε2

G(ε|X; θ) = {(1, 0)}

G(ε|X; θ) = {(1, 1)}

G(ε|X; θ) = {(0, 1)}

G(ε|X; θ) = {(0, 0)}

G(ε|X; θ) = {(0, 1), (1, 0)}
ε1

(−α1X1,−α2X2)

(−α1X1 − δ2,−α2X2 − δ1)

Figure 1. Representation of the model correspondence G(ε|X; θ) as a function of ε in the 2×2

entry game with duopoly profits lower than monopoly profits. The dotted lines represents the axes

in the ε space, and the full lines represent the frontiers of the regions defining the correspondence

G. The shaded area is the area of multiplicity, where G(ε|X; θ) contains two values (0, 1) and

(1, 0).

selection mechanism, the likelihood predicted by the model can be written as follows. Call Y the set of

possible outcomes in a generic market. The likelihood of observation y is L(y|X; θ) = P(y ∈ G(ε|X; θ)|X) =

νθ(G
−1(y|X; θ)), for all y ∈ Y and

∑
y∈Y L(y|X; θ) ≥ 1, where the inequality may be strict if there are

regions of multiplicity.

Pilot example 1 continued In the case of the duopoly entry game, the set of possible outcomes is Y =

{(0, 0), (0, 1), (1, 0), (1, 1)}. The likelihood of each individual outcome predicted by the model can be written
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as follows.

L((0, 0)|X; θ) = P(ε1 ≤ −α1X1, ε2 ≤ −α2X2|X) = νθ(G
−1((0, 0)|X; θ))

L((0, 1)|X; θ) = P(ε1 ≤ −α1X1 − δ2, ε2 ≥ −α2X2|X) = νθ(G
−1((0, 1)|X; θ))

L((1, 0)|X; θ) = P(ε1 ≥ −α1X1, ε2 ≤ −α2X2 − δ1|X) = νθ(G
−1((1, 0)|X; θ))

L((1, 1)|X; θ) = P(ε1 ≥ −α1X1 − δ2, ε2 ≥ −α2X2 − δ1|X) = νθ(G
−1((1, 1)|X; θ))

The likelihood predicted by the model is the set function A 7→ νθG
−1(A|X; θ) for A subset of Y = {(0, 1),

(0, 1), (1, 0), (1, 1)}. This set function is the Choquet capacity functional associated with the correspondence

G(ε|X; θ) and the distribution νθ of ε. If the support of νθ is sufficiently large, the likelihood sums to more

than one, because the region of multiple equilibria is “counted twice”. This is related to the non-additive

feature of Choquet capacity functionals, as seen here with the inequality νθ(G
−1({(0, 1)} ∪ {(1, 0)}|X; θ)) <

νθ(G
−1({(0, 1)}|X; θ))+νθ(G

−1({(1, 0)}|X; θ)), since the latter is equal to the former plus P(−α1X1 ≤ ε1 ≤
−α1X1 − δ2,−α2X2 ≤ ε2 ≤ −α2X2 − δ1).

The model can be completed by adding an equilibrium selection mechanism which will pick out a single

equilibrium for each value of the latent variable ε in the region of multiplicity. As formally defined in the

previous section, an equilibrium selection mechanism is a conditional probability π(.|ε, X) supported on

G(ε|X; θ). It is compatible with the data if the probabilities it predicts are equal to the true probabilities of

the observable variables.

Pilot example 1 continued As in (2.20) page 66 of Berry and Tamer (2006), in the duopoly example, we

have for i, j = 0, 1:

P ((i, j)|X) =

∫

U
π((i, j)|ε, X)νθ(dε)

For purposes of illustration and additional interpretation, we now introduce an additional result that

links the existence of a compatible equilibrium selection mechanism to measurable selections of the model

correspondence G.

Definition 6. A measurable selection of the measurable correspondence G(ε|X; θ) is a measurable function

γ(ε|X) such that γ(ε|X) ∈ G(ε|X; θ) for almost all ε and X, and for all θ. The set of measurable selections

is denoted Sel(G(.|X; θ)).

Pilot example 1 continued A measurable selection γ picks out either (0, 1) or (1, 0) for each ε such that

−α1X1 ≤ ε1 ≤ −α1X1 − δ2,−α2X2 ≤ ε2 ≤ −α2X2 − δ1. An example of such a selection is represented in

figure 2.
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ε2

ε1

γ(ε|Xm; θ) = (1, 1)

γ(ε|X; θ) = (0, 1)

(−α1X1,−α2X2)

γ(ε|X; θ) = (1, 0)

γ(ε|X; θ) = (0, 1)

γ(ε|X; θ) = (0, 0)

γ(ε|X; θ) = (1, 0)

(−α1X1 − δ2,−α2X2 − δ1)

Figure 2. Representation of a selection γ(ε|X; θ) from the model correspondence G(ε|X; θ).

Note that γ is identical to G except in the region of multiplicity.

The likelihood of the model given measurable selection γ is νθγ
−1. Since γ is a measurable function,

the probability image νθγ
−1 of νθ by γ is a countably additive probability measure, unlike the Choquet

capacity νθG
−1. Heuristically, an equilibrium selection mechanism is a distribution over selections, so that

the likelihood predicted by the model augmented with the equilibrium selection mechanism is a mixture

of νθγ
−1 where γ ranges over the set Sel(G(.|X; θ)) of measurable selections of G(.|X; θ). The following

proposition4 shows that the heuristics above are correct.

Proposition 1. The existence of a compatible equilibrium selection mechanism is equivalent to the fact that

the observed probability distribution of the outcome variable Y is a mixture of likelihoods induced by selections.

Formally, P (.|X) is in the closure (in the topology of convergence in distribution) of the convex hull of the set

of images of νθ by selections of the model correspondence, or P ∈ WCCH{νθγ
−1 : γ ∈ Sel(G(.|X; θ)) Xa.s.}.

4This result appeared as equivalence between (i’) and (ii’) in theorem 1’ of the previous version circulated

Galichon and Henry (2006b).
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As was noted in Berry and Tamer (2006) and Ciliberto and Tamer (2006), since the model contains no

prior information about which outcome is selected in the regions of multiplicity, the identified set ΘI for

the parameter vector θ is “the set of parameters for which there exists a proper selection function such

that the choice probabilities predicted by the model are equal to the choice probabilities obtained from the

data”. The definition of the identification region using a semiparametric likelihood representation, where

the selection mechanism is included as the infinite dimensional nuisance parameter π is impractical, so we

use theorem 1 to provide an operational method to compute ΘI . The existence of a compatible selection

mechanism is equivalent to the fact that the true distribution P of observed outcomes lies in the core of the

Choquet capacity functional L = νθG
−1 defined by the model. Hence, we have

ΘI = {θ ∈ Θ : ∀A ∈ 2Y ; P (A|X) ≤ νθ(G
−1(A|X; θ)); X a.s.}

= {θ ∈ Θ : ∀A ∈ 2Y ; P(Y ∈ A|X) ≤ P(G(ε|X; θ) ∩A 6= ∅|X); X a.s.}

where 2S denotes the set of all subsets of a set S, and where the last equality stems from the definition of

the pre-image of the correspondence G, and the fact that νθ is the distribution of the latent variable ε.

Pilot example 1 continued In the case of the duopoly entry game, the identified region is the set of

parameter vectors that satisfy the 16 inequalities P (A|X) ≤ νθ(G
−1(A|X; θ)), or in a different notation

P(Y ∈ A|X) ≤ P(G(ε|X; θ) ∩ A 6= ∅|X) for all sets A in 2Y , X-almost surely. An illustration of this

procedure is given in figure 3.

2. Core determining classes, or which inequalities to check

As we have seen in the first section, theorem 1 allows to reduce the problem of computing the identified

set to that of checking a set of inequalities. However, the computational burden is only partially lifted, as

the number of inequalities to check can be very large if the cardinality of the outcome space is large. In this

section, we shall analyze ways of reducing this remaining computational burden, by eliminating redundant

inequalities in the computation of the identified set. This is formalized with the concept of core determining

classes, which was first introduced in section 3.2.2 page 27 of Galichon and Henry (2006b).

Definition 7. A class A of measurable subsets of Y is called core determining for the Choquet capacity

functional ρ on Y if it is sufficient to characterize the core of ρ, i.e. if a probability Q is in core(ρ) when

Q(A) ≤ ρ(A) for all A ∈ A. In other words, Q(A) ≤ ρ(A) for all A ∈ A implies Q(A) ≤ ρ(A) for every

measurable set A.

A core determining class A allows the elimination of all the inequalities Q(A) ≤ ρ(A) for A /∈ A
when checking whether a probability Q belongs to the core of a Choquet capacity functional ρ. Since

the likelihood predicted by the model Y ∈ G(ε|X; θ) was characterized by the Choquet capacity functional
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(−α1X1 − δ2,−α2X2 − δ1)

G(ε|X; θ) = {(1, 0)}

G(ε|X; θ) = {(1, 1)}

G(ε|X; θ) = {(0, 1)}

G(ε|X; θ) = {(0, 0)}

G(ε|X; θ) = {(0, 1), (1, 0)}

(−α1X1,−α2X2)

Figure 3. Representation of one of the inequalities to be checked. The probability of the

outcome being either (0, 0) or (0, 1) needs to be no larger than the probability of the latent

variable lying in the set covered with horizontal dashed lines.

A 7→ P(G(ε|X; θ) ∩ A 6= ∅|X), a core determining class of sets is sufficient to characterize the identified

region ΘI as summarized in the following proposition.

Proposition 2. If A(θ) is core determining for the Choquet capacity functional A 7→ P(G(ε|X; θ) ∩ A 6=
∅|X), then ΘI = {θ ∈ Θ : ∀A ∈ A(θ), P(Y ∈ A|X) ≤ P(G(ε|X; θ) ∩A 6= ∅|X), X − a.s.}.

The challenge therefore becomes that of finding a core determining class A in order to reduce the number

of inequalities to be checked to the cardinality of A. We first consider the case of our pilot example, before

turning to a criterion that will prove useful in exhibiting core determining classes in many important cases.

Pilot example 1 continued We return to the duopoly entry game and consider some proposals for the

computation of the identified set proposed in the literature. We call ABJ class the class of singleton sets

({(0, 0)}, {(0, 1)}, {(1, 0)}, {(1, 1)}), since it corresponds to the class of sets proposed in Andrews, Berry, and

Jia (2003) specialized to this simple case. It is immediate to see that the ABJ class is not core determining in

general. Indeed, if ε has large enough support, the two equalities P(Y ∈ {(0, 1)}|X) = P(G(ε|X; θ)∩{(0, 1)} 6=
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∅|X) = P(ε1 ≤ −α1X1 − δ2, ε2 ≥ −αX2|X) and P(Y ∈ {(1, 0)}|X) = P(G(ε|X; θ) ∩ {(1, 0)} 6= ∅|X) =

P(ε1 ≥ −α1X1, ε2 ≤ −αX2 − δ1|X) jointly imply P(Y ∈ {(0, 1), (1, 0)}|X) > P(G(ε|X; θ) ∩ {(0, 1), (1, 0)} 6=
∅|X) = P([ε1 ≥ −α1X1 or ε2 ≤ −αX2 − δ1] and [ε1 ≤ −αX1 − δ2 or ε2 ≤ −αX2 − δ1]|X).

We now state a general criterion for the core determining property.

Proposition 3. A class A(θ) of subsets of Y is core determining for the Choquet capacity A 7→ P(G(ε|X; θ)∩
A 6= ∅|X) if for every measurable subset A of Y, there exists nonnegative integers K, L, N , αk, k = 1, . . . , K,

and elements A1, . . . , AK of A(θ) such that for almost all y ∈ Y and almost all ε ∈ U ,

1A(y) ≤ 1

N

(
K∑

k=1

αk1Ak (y)− L

)
and 1{G(ε|X;θ)∩A6=∅}(ε) ≥ 1

N

(
K∑

k=1

αk1{G(ε|X;θ)∩Ak 6=∅}(ε)− L

)
. (2.1)

We illustrate an immediate application of this proposition in our pilot example.

Pilot example 1 continued In the duopoly entry game, we can use proposition (2.1) directly to show

that the class of sets A = {{(0, 0)}, {(0, 1)}, {(1, 0)}, {(1, 1)}, {(0, 1), (1, 0)}} is a core determining class.

Note that this class has cardinality 5, which is very low compared to 24 = 16. Take any subset A

of Y. Write A = A1 ∪ A2, where A1 is a subset of {(0, 1), (1, 0)}, hence an element of A, and A2 is

a subset of {(0, 0), (1, 1)}. Then we have 1A = 1A1 + 1A2 = 1A1 + 1{(0,0)∈A2} ∗ 1{(0,0)} + 1{(1,1)∈A2} ∗
1{(1,1)} and 1{ε: G(ε|X;θ)∩A6=∅} = 1{ε: G(ε|X;θ)∩A1 6=∅} + 1{ε: G(ε|X;θ)∩A2 6=∅} = 1{ε: G(ε|X;θ)∩A1 6=∅} + 1{(0,0)∈A2}

∗1{ε: G(ε|X;θ)∩{(0,0)}6=∅} + 1{(1,1)∈A2} ∗ 1{ε: G(ε|X;θ)∩{(1,1)}6=∅}. Then it follows from proposition 3 that A is

a core determining class.

We now show how to use proposition 3 to identify core determining classes more generally to avoid

painstaking case-by-case elimination of redundant inequalities. The main tool in the computation of identi-

fied sets in entry games is the following corollary of proposition 3. It gives general conditions under which

one can find a core determining class of low cardinality. Recall that a subset A of an ordered set (with

ordering ¹) is said to be connected if any a such that inf A ¹ a ¹ sup A belongs to A.

Assumption 2 (Monotonicity). There exists an ordering -Y of the set of outcomes Y and an ordering

-U of the set of latent variables U such that G(ε|X; θ) is connected for all ε ∈ U , X-a.s., all θ, and

sup G(ε2|X; θ) %Y sup G(ε1|X; θ) and inf G(ε2|X; θ) %Y inf G(ε1|X; θ) when ε1 -U ε2. Both ordering are

allowed to depend on the exogenous variables X, but the dependence is suppressed in the notation for clarity.

Remark 1. This assumption is related to monotone comparative statics in supermodular games (see Topkis

(1998), Vives (1990) and Milgrom and Roberts (1990)). Testing monotone comparative statics is considered

in Echenique and Komunjer (2008).
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We illustrate this assumption on our pilot duopoly entry game before stating the corollary and applying

it to the more interesting case of an oligopoly entry game with two types of players presented in Berry and

Tamer (2006).

Pilot example 1 continued In the duopoly entry game, the orderings are very simple to construct. A

lexicographic order on Y is suitable, with (0, 0) -Y (0, 1) -Y (1, 0) -Y (1, 1). On U the ordering is related

to predicted outcomes. All ε producing the same predicted outcomes will be equivalent, and the ordering

on predicted outcomes is {(0, 0)} -U {(0, 1)} -U {(0, 1), (1, 0)} -U {1, 0} -U {1, 1}, where A1 -U A2

is a short-hand notation for ε1 -U ε2 if G(ε1|X; θ) = A1 and G(ε2|X; θ) = A2. It is straightforward to

check assumption 2. For instance, taking ε1 such that G(ε1|X; θ) = {(0, 0)} and ε2 such that G(ε1|X; θ) =

{(0, 1), (1, 0)} we have sup G(ε1|X; θ) = (0, 1) -Y (1, 0) = sup G(ε1|X; θ) and inf G(ε1|X; θ) = (0, 1) =

inf G(ε1|X; θ). This is illustrated in figure 4.

U∗

{(0, 0)} {(0, 1)} {(1, 0)} {(1, 1)}

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Y

{(0, 1),

(1,0)}

Figure 4. The monotonicity requirement in assumption 2 is satisfied for this choice of order-

ings in the duopoly entry example. (The thick dots represent the correspondence G(.|X; θ)). U∗

denotes the ordered set of combinations of equilibria.
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We are now in a position to state the corollary5, which is the main tool in the construction of core

determining classes, and hence in the computation of the identified set.

Corollary 1. Suppose assumption 2 is satisfied with orderings -Y and -U . Call I the cardinality of Y,

and list outcomes (elements of Y) in increasing order (with respect to ordering -Y) as y1, . . . , yI . Then

A(θ) = ({y1, . . . , yi}, {yi, . . . , yI} : i = 1 . . . , I) is core determining.

Corollary allows to reduce the cardinality of the power set 2Y to twice the cardinality of Y minus 2 (since

the inequality needn’t be checked on the whole set Y), as we illustrate in our pilot example.

Pilot example 1 continued In the duopoly example, assumption 2 is satisfied, as seen on figure 4, with the

ordering described above. Hence the class ({{(0, 0)} , {(0, 0), (0, 1)}, {(0, 0), (0, 1), (1, 0)}, {(0, 1), (1, 0), (1, 1)},
{(1, 0), (1, 1)}, {(1, 1)}) is core determining.

3. Alternative characterization of the core: linear programming approach

As the construction of sufficiently small core determining classes may be arduous in certain cases, we

propose an alternative for the computation of the identified features of models with a finite set of observable

outcomes, based on a linear programming approach. To set up the method, we need the following notations

and definitions. For standard definitions in graph theory, we refer the reader to Papadimitriou and Steiglitz

(1998).

Call U∗ the set of predicted combinations of equilibria, formally U∗ = {G(ε|X; θ); ε ∈ U}. Hence U∗

contains subsets of Y, but is typically of much lower cardinality than the power set 2Y . Further consider the

bi-partite graph G(θ, X) in Y ×U∗. The latter is defined as the set of pairs (y, u) ∈ Y ×U∗ such that y ∈ u.

Each vertex y in Y has weight P(Y = y|X) and each vertex u ∈ U∗ has weight P(G(ε|X; θ) = u|X). The

graph contains edges (y, u) linking an element y ∈ Y to an element u ∈ U∗ if the former is an element of the

latter (i.e. y ∈ u). Finally, call P (y|X) = P(Y = y|X) the actual probabilities of observable variables y ∈ Y,

and call Q(.|X; θ) the probabilities Q(u|X; θ) = P(G(ε|X; θ) = u|X). If we consider G (keeping the same

notation for simplicity) as a correspondence from U∗ to Y, then, formally G(u) = u, and we have shown in

theorem 1 that θ belongs to the identified set if and only if for any subset A of Y, P (A|X) ≤ Q(G−1(A)|X; θ).

Galichon and Henry (2008) show that it is equivalent to the existence of a joint probability π on Y×U∗ with

marginal distributions P (.|X) and Q(.|X; θ) and such that all the restrictions embodied in the model hold

almost surely, or formally, such that π{(y, u) ∈ Y × U∗ : y ∈ u} = 1. This is summarized in the following

proposition6.

5This result is a reformulation of theorem 3d of the previous version circulated Galichon and Henry

(2006b).
6This result is a special case of equivalence between (ii’) and (iii’) in theorem 1’ of the previous version

circulated Galichon and Henry (2006b).
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Proposition 4. The parameter value θ belongs to the identified set if and only if there exists a probability

on Y × U∗ with domain G(X; θ) and with marginal probabilities P (.|X) and Q(.|X; θ).

Note that one implication in proposition 4 is very easy to prove. Call U the random element with

distribution Q. If a joint probability exists with the required properties, then Y ∈ A ⇒ U ∈ G−1(A), so

that 1{Y ∈A} ≤ 1{U∈G−1(A)}, π-almost surely. Taking expectation, we have Eπ(1{Y ∈A}) ≤ Eπ(1{U∈G−1(A)}),

or equivalently P (A|X) ≤ Q(G−1(A))|X; θ). The converse is much more involved and relies on the optimal

transportation theory.

We illustrate this requirement on our pilot example.

Pilot example 1 continued For the case of the duopoly entry model, U∗ = {{(0, 0)}, {(0, 1)}, {(1, 0)},
{(1, 1)}, {(0, 1), (1, 0)}}. The bi-partite graph is represented in figure 5, where py denotes P(Y = y|X) and

qu = P(G(ε|X; θ) = u|X). The existence of a joint probability on Y×U∗ supported on G(X; θ) with marginal

probabilities py, y ∈ Y and pu, u ∈ U∗ can be represented graphically by a set of non negative numbers

attached to each edge of the graph, that sum to 1, and such that the weight of each vertex is equal to the

sum of the weights on the edges that reach it. For instance, a joint probability is denoted α1, . . . , α6 and

must satisfy αi ≥ 0 for i = 1, . . . , 6,
∑6

i=1 αi = 1 and equalities such as p01 = α2 + α3 and q01,10 = α3 + α4.
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p10

(1, 1)

(1, 0)

(0, 1)

(0, 0)

{(0, 0)}

{(0, 1)}

{(0, 1), (1, 0)}

{(1, 0)}

{(1, 1)}

p00

p01

p11

q00

q01

q01,10

q10

q11

Y

U∗

α1

α2

α3

α4

α5

α6

Figure 5. Bi-partite graph representing the admissible connections between observable out-

comes and combinations of equilibria.

Since we have now formulated the problem of computing the identified set as a problem involving the

existence of a probability measure with given marginal distributions, we can appeal to efficient computational
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methods in the optimal transportation literature. The problem of sending py, y ∈ Y units of a good from

sources y ∈ Y to pu, u ∈ U∗ units to terminals at minimum cost of transportation, where costs are attached

to each pair (y, u) ∈ Y×U∗ is called the Monge-Kantorovich problem (a variant of Monge (1781) formulated

by Hitchcock (1941), Kantorovich (1942) and Koopmans (1949)), and many efficient algorithms exist for

this problem (see for instance page 143 of Papadimitriou and Steiglitz (1998)). Our problem can be reduced

to a Monge-Kantorovich problem with 0-1 cost of transportation, where a pair (y, u) is assigned cost zero if

it belongs to G(X; θ), and 1 otherwise, and there exists a joint law on G(X; θ) with marginals P and Q (in

other words, θ is in the identified set) if and only if there is a zero cost solution to the Monge-Kantorovich

problem thus defined.
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∞

{(0, 0)}

{(0, 1)}

{(0, 1), (1, 0)}

{(1, 0)}

{(1, 1)}

(1, 0)

(0, 1)

(1, 1)

q01

q10

q11

p00

p10

p11

Sink

(0, 0)

q00

q01,10

p01

Source

∞

∞

∞

∞

0

∞

Figure 6. Maximum flow formulation of the Monge-Kantorovich problem for the duopoly

example. Mass flows from the source to the sink through the network. The number on each edge

is the maximum mass that can flow through that edge. The source sends py mass exactly to each

node corresponding to elements of Y, and the sink receives qu mass from each node corresponding

to an element of U∗. Between edges in Y and U∗, mass can flow freely through pairs (y, u) such

that y ∈ u (full lines with infinite capacity), and not at all through pairs (y, u) such that y /∈ u

(dotted lines, with zero capacity). θ is in the identified set if and only if the maximum flow through

this network is exactly 1.

As explained in Ford and Fulkerson (1957) (see also Papadimitriou and Steiglitz (1998) section 7.4

page 143), there is an equivalent dual formulation of this Monge-Kantorovich minimum cost of transporta-

tion problem as a maximum flow problem described in figure 6. The edges in the graph with zero cost in the
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minimum cost of transportation problem have infinite capacity (not to be confused with Choquet capacity

functional) in the dual maximal flow problem. Hence efficient maximum flow programs (such as maxflow.m

in the Matlab BGL library) can be applied directly to the network described in figure 6, and the parameter

value θ is in the identified set if and only if the maximum flow program returns a maximum flow of exactly

1 (note that the network capacities depend on θ through the probabilities qu). Classical algorithms exist

for this problem, first and foremost, the Ford-Fulkerson algorithm (see Ford and Fulkerson (1957)). The

algorithm implemented in the Matlab BGL library involves an order of Card(U∗)3 arithmetic operations

(see page 217 of Papadimitriou and Steiglitz (1998)), which is the best known order of complexity for dense

networks. A standard laptop computer requires only a couple of minutes to test 106 values of the parameter

vector in section 4.

4. Illustration: oligopoly entry with two types of players

We now turn to a more substantive illustration of our methods to compute the identified set, first, to

show the operational usefulness of corollary 1, and second, to illustrate the power of the linear programming

approach. To do so, we consider the oligopoly entry game with two types of players presented in appendix A

of Berry and Tamer (2006). The profit function of type 1 firms depends on the total number of firms in the

market, but not on the type of those firms, whereas profits of type 2 firms depend both on the number and

on the type of firms present in the market. The latent variable is the fixed cost f1 for firms of type 1 and f2

for firms of type 2. The model is simplified by assuming linearity of profits in firm number as follows.

π1(Y1, Y2, X, f ; θ) = α0 + α1(Y1 + Y2) + α2X − f1

π2(Y1, Y2, X, f ; θ) = β0 + β1Y1 + β2Y2 + β3X − f2,

with α1, β1, β2 strictly negative and β2 > β1 to fix ideas (profit of type 2 firms will decrease by a larger

amount if a type 1 firm enters the market than if a type 2 firm does). The set of observable outcomes is

Y = {(i, j) : i, j = 0, 1, 2}, where i denotes the number of type 1 firms and j the number of type 2 firms

present in the market. Y can be ordered lexicographically, where the number of firms present in the market

is considered first, and then the identity of firms (type 1 dominating type 2)7. Hence (0, 0) -Y (0, 1) -Y
(1, 0) -Y (0, 2) -Y (1, 1) -Y (2, 0) -Y (1, 2) -Y (2, 1) -Y (2, 2). The model correspondence is represented

in figure 7, which is taken from Berry and Tamer (2006).

4.1. Core determining class approach. We first illustrate the usefulness of corollary 1 for the determi-

nation of a core determining class in this example. Figure 8 graphs the orderings that satisfy assumption 2

up to the fact that the set of equilibria is not always connected. Indeed, in the ordering of outcomes, (1, 1)

7The order could be rationalized by total profit in the industry, but it is not necessary for the construction

of a core determining class nor the computation of the identified set.
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(2, 0)}

G(f |X; θ) = {(2, 0)}

{(0, 2)}

{(0, 1)}

{(0, 0)}{(1, 0)}

{(2, 2)}

{(2, 1)}

{(1, 2)}

{(1, 2),

(2, 1)}

{(1, 2),

(2, 0)}

{(0, 1),

(1, 0)}

{(0, 2),

(1, 0)}

β0 + β2

β0 + 2β2

β0 + β1 + β2

β0 + β1 + 2β2

β0 + 2β1 + β2

β0 + 2β1 + 2β2

f2

f1

α
0

+
4
α

1

α
0

+
3
α

1

α
0

+
2
α

1

α
0

+
α

1

{(0, 2),

(2, 0)}

{(0, 2),

(2, 0)}

{(0, 2)

(1, 1),

Figure 7. Model correspondence in the oligopoly entry game with two types of firms, two of

each type.

comes between (0, 2) and (2, 0), or more precisely, (0, 2) -Y (1, 1) -Y (2, 0). Now (1, 1) is not an equilibrium

when α0 + 3α1 < f1 ≤ α0 + 2α1 and β0 + β1 + β2 < f2 ≤ β0 + 2β2, so the set of equilibria {(0, 2), (2, 0)} is

disconnected in that case. However, since (1, 1) is observed only when ε ∈ {(0, 2), (1, 1), (2, 0)}, the mass p11

can be removed from q02,11,20 and after re-normalization corollary 1 can be applied directly to Y\{(1, 1)}
and U∗, yielding the class A(θ) = ({(0, 0)}, {(0, 0), (0, 1)}, {(0, 0), (0, 1), (1, 0)}, {(0, 0), (0, 1), (1, 0), (0, 2)},
{(0, 0), (0, 1), (1, 0), (0, 2), (2, 0)}, {(0, 0), (0, 1), (1, 0), (0, 2), (2, 0), (1, 2)}, {(0, 0), (0, 1), (1, 0), (0, 2), (2, 0),

(1, 2), (2, 1)}, {(0, 1), (1, 0), (0, 2), (2, 0), (1, 2), (2, 1), (2, 2)}, {(1, 0), (0, 2), (2, 0), (1, 2), (2, 1), (2, 2)}, {(0, 2),

(2, 0), (1, 2), (2, 1), (2, 2)}, {(2, 0), (1, 2), (2, 1), (2, 2)}, {(1, 2), (2, 1), (2, 2)}, {(2, 1), (2, 2)}, {(2, 2)}). Note

that its cardinality is 2 × 7 = 14, as opposed to the cardinality of the power set of Y which is 29 = 512.

Note in addition that this class is in fact independent of θ, as long as the conditions stated in Ciliberto and

Tamer (2006) that 0 > β2 > β1 and α1 < 0 are satisfied.
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Figure 8. Assumption 2 is satisfied in the oligopoly entry game with two types of firms, two

of each type, up to the fact that the image of G({(0, 2), (2, 0)}|X; θ) is not connected.

4.2. Linear programming approach. Consider now the linear programming strategy for computing the

identified set. The bipartite graph corresponding to this example is represented in figure 9. As shown in

proposition 4, a value of the parameter vector is in the identified set if and only if there exists a zero cost

transportation plan for the transfer of masses py on the elements of Y to masses qu on the elements of

U∗. A transportation plan is a set of nonnegative numbers attached to all pairs (y, u) ∈ Y × U∗ (which

represents the amount of mass from y that is transferred to u via the edge (y, u)). In our application, the

transportation cost from y to u is zero if y and u are connected by an edge in the graph of figure 9, and

1 otherwise. If the algorithm returns a zero cost transportation plan, it means that mass is transferred

through edges of the graph only, and for instance the pair ((1, 1), {(0, 2), (1, 1), (2, 0)}) is assigned a non

negative number (i.e. some mass is transported there), but the pair ((1, 1), {(2, 0), (0, 2)}) is assigned zero

(i.e. no mass is transported there). The existence of a zero cost transportation plan is equivalent to the

existence of a joint distribution on Y ×U∗ which is concentrated on the graph of figure 9 and has the correct

marginal distributions, hence, it is equivalent to the fact that θ is in the identified set, as we showed in

proposition 4.
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Figure 9. Bi-partite graph representing the admissible connections between observable out-

comes and combinations of equilibria in the two-type oligopoly entry model.
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Table 1. Adjacency matrix for the two-type oligopoly model.

(0, 0) (0, 1) (1, 0) (0, 2) (1, 1) (2, 0) (1, 2) (2, 1) (2, 2) Sink

Source p00 p01 p10 p02 p11 p20 p12 p21 p22

{(0, 0)} ∞ q00

{(0, 1)} ∞ q01

{(0, 1), (1, 0)} ∞ ∞ q01,10

{(1, 0)} ∞ q10

{(1, 0), (0, 2)} ∞ ∞ q02,10

{(0, 2)} ∞ q02

{(0, 2), (2, 0)} ∞ ∞ q02,20

{(0, 2), (1, 1), (2, 0)} ∞ ∞ ∞ q02,11,20

{(2, 0)} ∞ q20

{(2, 0), (1, 2)} ∞ ∞ q20,12

{1, 2} ∞ q12

{(1, 2), (2, 1)} ∞ ∞ q12,21

{(2, 1)} ∞ q21

{(2, 2)} ∞ q22

The minimum cost transportation problem is equivalent to the dual maximum flow problem, as described

in the previous section. Mass flows through the network with 25 nodes, which include the source, the 9

elements of Y, the 14 elements of U∗ and the sink (mass flows in the direction Source → Y → U∗ → Sink).

A network is characterized by its adjacency matrix, which gives all the links between nodes with their

capacity. In the case of interest here, the adjacency matrix is given in table 1. Maximum flow programs

take this adjacency matrix as an input, and return the maximum flow through the network it characterizes.

This maximum flow cannot be larger than
∑

y∈Y py =
∑

u∈U∗ pu = 1, and it is equal to 1 if and only if θ is

in the identified set.

As an illustration of the procedure, we compute the identified set for the two-type oligopoly model with

the following distributional hypotheses and normalization restrictions. The fixed cost vector (f1, f2) is

assumed to be uniformly distributed on [0, 1]2. α0 and β0 are set equal to 1. As previously noted, we assume

that monopoly profits are larger than oligopoly profits, and that a type-two firm’s profit decreases more if

a type one firm enters than a type two firm, hence 0 > α0 and 0 > β2 > β1. We can therefore calculate

the probabilities of each combination of equilibria u ∈ U∗. These probabilities are computed in a Matlab

program file available on request. These implied probabilities are entered together with the true frequencies

of observable outcomes into the adjacency matrix of table 1 and a maximum flow algorithm returns a flow



SET IDENTIFICATION IN MODELS WITH MULTIPLE EQUILIBRIA 23

of 1 if the value of θ = (α1, β1, β2)
′ (used to compute the predicted probabilities) belongs to the identified

set, and a flow strictly smaller than 1 if it doesn’t. To give an idea of the efficiency of the method, we can

test 105 values of θ = (α1, β1, β2)
′ in less than a second on a standard portable computer.

−0.26

α1

β2

Identified Set

ABJ Set

−0.4 −0.41 −0.42 −0.43 −0.44

−0.23

−0.24

−0.25

Figure 10. Projection of the identified set, and of the set characterized by the ABJ class on

the (β2, α1) space. The projection of the identified set is a single point (β2, α1) = (−0.4,−0.25).

The frequencies of observable variables are (p00, p01, p10, p02, p11, p20, p12, p21, p22) =

(0.1, 0.15, 0.15, 0.1, 0, 0.5, 0, 0, 0).

For illustration purposes, we compute the identified set for a given choice of the observable frequencies,

namely (p00, p01, p10, p02, p11, p20, p12, p21, p22) = (0.1, 0.15, 0.15, 0.1, 0, 0.5, 0, 0, 0), and compare it to the set

obtained by imposing the inequality restrictions on the ABJ class only. The latter corresponds to the set

of values of the parameters such that p00 ≤ q00, p01 ≤ q01 + q01,10, p10 ≤ q01,10 + q10 + q02,10, p02 ≤
q02,10 + q02 + q02,20 + q02,11,20, p11 ≤ q02,11,20, p20 ≤ q02,20 + q02,11,20 + q20 + q20,12, p12 ≤ q20,12 + q12 + q12,21,

p21 ≤ q12,21 + q21 and p22 ≤ q22. It turns out the values of α1 and β2 are identified (under these specific

values for the true probabilities of observable variables, which were chosen for the simulation purposes from

the parameter values), and all values of β1 < β2 are compatible with the given frequencies. The set defined

by the ABJ class restrictions, however, is much larger, as shown by its projection on the (β2, α1) space in

figure 10. There are also many values of the observed frequencies, for which the identified set is empty, so



24 ALFRED GALICHON† MARC HENRY§

that the model is rejected, but the set defined by the ABJ class restrictions is non-empty, so that it fails to

reject the model.

Conclusion

In the context of models with multiple equilibria, we have proposed an equivalence result between the

existence of an equilibrium selection mechanism compatible with the data and a set of inequalities charac-

terizing the core of the model likelihood, and provided methods to reduce this number of inequalities to be

checked with an appeal to the notion of core determining families and to efficient linear programming tech-

niques. The issue of statistical inference on the identified feature thus characterized is taken up in Galichon

and Henry (2008) and Galichon and Henry (2006a), which complement the seminal work of Chernozhukov,

Hong, and Tamer (2007).

Appendix A. Proofs of results in the main text

A.1. Proof of theorem 1. It suffices to show that for all θ ∈ Θ, statement 1 and statement 2 are equivalent,

where statement 1 and statement 2 are defined as the following. Statement 1: P(Y ∈ A|X) ≤ P(G(ε|X; θ)∩
∅|X) for all A measurable subset of Y, X-almost surely. Statement 2: For almost all ε, there exists a

probability measure π(.|ε, X) with support G(ε|X; θ) such that P (A|X) =
∫
U π(A|ε, X)νθ(dε) for all A

measurable subset of Y, X-almost surely. We proceed in six steps. Step 1: Since G(ε|X; θ) is nonempty and

closed by assumption, the set ∆(G(ε|X; θ)) of probability measures on Y with support G(ε|X; θ) is convex and

closed in the topology of convergence in distribution. Step 2: Since G(.|X; θ) is a measurable correspondence,

for any f ∈ Cb(Y), the set of all continuous and bounded real functions on Y, the map ε 7→ sup{∫ fdµ :

µ ∈ ∆(G(ε|X; θ))} is measurable. Step 3: By step 1 and step 2, we can apply theorem 3 of Strassen (1965)

to conclude that statement 2 is equivalent to
∫
Y f(y)P (dy) ≤ ∫

U sup{∫ fdµ : µ ∈ ∆(G(ε|X; θ))}νθ(dε) for

all f ∈ Cb(Y). Step 4: For any bounded continuous function f , we have sup{∫ fdµ : µ ∈ ∆(G(ε|X; θ))} =

max{f(y) : y ∈ G(ε|X; θ)}. Step 5: Call ρ the Choquet capacity functional defined for all measurable

subset A of Y by ρ(A) = P(G(ε|X; θ) ∩ A 6= ∅|X) = νθ(G
−1(A|X; θ)). We show that

∫
U max{f(y) :

y ∈ G(ε|X; θ)}νθ(dε) =
∫
Choquet

fdρ, where the latter is the Choquet integral with respect to the Choquet

capacity functional ρ, which is defined by
∫
Choquet

fdρ =
∫∞
0

ρ({f ≥ v}) dv +
∫ 0

−∞ (ρ({f ≥ v}) − 1) dv.

The latter can be rewritten
∫∞
0
P
(
G(ε|X; θ) ∩ {f ≥ v} 6= ∅|X)

dv +
∫ 0

−∞ (P
(
G(ε|X; θ) ∩ {f ≥ v} 6= ∅|X)−

1) dv, which is equal to
∫∞
0
P
(
maxy∈G(ε|X;θ) f(y) ≥ v|X)

dv +
∫ 0

−∞ (P
(
maxy∈G(ε|X;θ) f(y) ≥ v|X)− 1) dv =

∫
U max{f(y) : y ∈ G(ε|X; θ)}νθ(dε), as we set out to show. Step 6: Finally, by monotone continuity, we

have that
∫
Y f(y)P (dy|X) ≤ ∫

Choquet
fdρ for all f ∈ Cb(Y) is equivalent to the fact that P (.|X) is in the

core of the Choquet capacity functional ρ, which is statement 1.
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A.2. Proof of proposition 1. By theorem 1, the existence of a compatible equilibrium selection mechanism

is equivalent to the fact that P is in the core of νθG
−1(.|X; θ). By corollary 1 of Castaldo, Maccheroni, and

Marinacci (2004), the core of the Choquet capacity functional νθG
−1(.|X; θ) is equal to the closed convex

hull of the set of images of measurable selections of G. Hence, the result follows.

A.3. Proof of proposition 3. Subtracting the second inequality in equation 2.1 yields 1A−1{ε: G(ε|X;θ)∩A6=∅} ≤
1
N

(∑K
k=1 αk(1Ak − 1{ε: G(ε|X;θ)∩Ak 6=∅})

)
. Taking expectations (conditionally on X) on both sides of the

previous equation yields

P(Y ∈ A|X)− P(G(ε|X; θ) ∩A 6= ∅) ≤ 1

N

(
K∑

k=1

αk(P(Y ∈ Ak|X)− P(G(ε|X; θ) ∩Ak 6= ∅))

)
.

This in turn implies that P(Y ∈ A|X) ≤ P(G(ε|X; θ)∩A 6= ∅) if P(Y ∈ Ak|X) ≤ P(G(ε|X; θ)∩Ak 6= ∅) for

each k, which means that A(θ) is indeed core determining, which completes the proof.

A.4. Proof of corollary 1. We consider the equivalent problem where the set of latent variables U is

replaced by the set of predicted combinations of equilibria U∗. We keep the same notation for the equilibrium

correspondence G, and call u the elements of U∗. For simplicity, we also drop the dependence on X and θ

in the notation, so that G : u 7→ G(u) is a correspondence between U∗ and Y. Note that by construction

G(u) = u ∈ 2Y , but it is not the identity when considered as a correspondence. Let A be a subset of Y.

Call Ky the cardinality of Y and Ku the cardinality of U∗. List all elements of Y as yk, k = 1 . . . , Ky and

all elements of U∗ as uk, k = 1, . . . , Ku. For any u ∈ U∗, define ku by u = uku and for any y ∈ Y, define ky

by y = yky . As usual, denote G−1(A) the set {u ∈ U∗ : G(u) ∩ A 6= ∅}. Call ∆1G−1(A)(u1) = 1G−1(A)(u1)

and for k ≥ 2, ∆1G−1(A)(uk) = 1G−1(A)(uk) − 1G−1(A)(uk−1). Call ∆1+
G−1(A)

and ∆1−
G−1(A)

the positive

and negative parts of ∆1G−1(A). By construction, we have for any u ∈ U∗,

1G−1(A)(u) =

ku∑

k=1

∆1G−1(A)(uk)

=

Ku∑

k=1

1{uk,...,uKu}(u)∆1G−1(A)(uk)

=

Ku∑

k=1

1{uk,...,uKu}(u)∆1+
G−1(A)

(uk)−
Ku∑

k=1

1{uk,...,uKu}(u)∆1−
G−1(A)

(uk)

=

Ku∑

k=1

1{uk,...,uKu}(u)∆1+
G−1(A)

(uk) +

Ku∑

k=1

1{u1,...,uk−1}(u)∆1−
G−1(A)

(uk)−
Ku∑

k=1

∆1−
G−1(A)

(uk).

We then apply proposition 3 with the following choice of parameters. K = 2Ku, αj/N = ∆1+
G−1(A)

(uj),

j = 1 . . . , Ku, αj/N = ∆1−
G−1(A)

(uj−Ku), j = Ku + 1, . . . , 2Ku, and L/N =
∑Ku

k=1 ∆1−
G−1(A)

(uk). There

remains to show that

1A(y) ≤
Ku∑

k=1

1{inf G(uk),...,yKy }(y)∆1+
G−1(A)

(uk) +

Ku∑

k=1

1{y1,...,sup G(uk−1)}(y)∆1−
G−1(A)

(uk)−
Ku∑

k=1

∆1−
G−1(A)

(uk)
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to complete the proof. The latter follows from

Ku∑

k=1

1{inf G(uk),...,yKy }(y)∆1+
G−1(A)

(uk) +

Ku∑

k=1

1{y1,...,sup G(uk−1)}(y)∆1−
G−1(A)

(uk)−
Ku∑

k=1

∆1−
G−1(A)

(uk)

=

Ku∑

k=1

1{inf G(uk),...,yKy }(y)∆1+
G−1(A)

(uk)−
Ku∑

k=1

1{yksup G(uk−1)+1,...,yKu}(y)∆1−
G−1(A)

(uk). (A.1)

We have kinf G(uk) < ksup G(uk−1) +1 (otherwise, there would be a y that belongs to none of the u’s, i.e. that

is never an equilibrium outcome, and it could be eliminated from the analysis). Hence (A.1) is equal to

Ku∑

k=1

1{inf G(uk),...,yksup G(uk−1)+1}(y)∆1+
G−1(A)

(uk)

+

Ku∑

k=1

1{yksup G(uk−1)+1,...,yKu}(y)(∆1+
G−1(A)

(uk)−∆1−
G−1(A)

(uk))

=

Ku∑

k=1

1{inf G(uk),...,yksup G(uk−1)+1}(y)∆1+
G−1(A)

(uk) +

Ku∑

k=1

1{yksup G(uk−1)+1,...,yKu}(y)∆1G−1(A)(uk)

≥
Ku∑

k=1

1{inf G(uk),...,yksup G(uk−1)+1}(y)∆1G−1(A)(uk) +

Ku∑

k=1

1{yksup G(uk−1)+1,...,yKu}(y)∆1G−1(A)(uk)

=

Ku∑

k=1

1{inf G(uk),...,yKu}(y)∆1G−1(A)(uk) = 1A(y),

Which completes the proof.

A.5. Proof of Proposition 4. First note that any specification of the latent variable ε that produces the

same combinations of equilibria listed in U∗ with the same probabilities are observationally equivalent. We

can therefore replace U by U∗, where each u ∈ U∗ has probability Q(u|X; θ) = P(G(ε|X; θ) = u|X), and

redefine G as the correspondence from U∗ to Y defined by G(u) = u. By theorem 1, θ belongs to the

identified set if and only if for any subset A of Y, P(Y ∈ A|X) ≤ P(G(ε|X; θ) ∩ A 6= ∅|X) or equivalently

P (A|X) ≤ Q(G−1(A)|X; θ). By proposition 1 of Galichon and Henry (2008), this is equivalent to the

existence of a probability π on Y × U∗ with marginal distributions P (.|X) and Q(.|X; θ) and such that

π{(y, u) ∈ Y × U∗ : y ∈ u} = 1, in other words such that it is supported on the subset of pairs (y, u) such

that y ∈ u. This completes the proof.

References

Ackerberg, D., L. Benkard, S. Berry, and A. Pakes (2007): “Econometric tools for analyzing market

outcomes,” Handbook of Econometrics, Volume 6A.

Andrews, D., S. Berry, and P. Jia (2003): “Placing bounds on parameters of entry games in the presence

of multiple equilibria,” unpublished manuscript.



SET IDENTIFICATION IN MODELS WITH MULTIPLE EQUILIBRIA 27

Andrews, D., and G. Soares (2007): “Inference for Parameters Defined by Moment Inequalities Using

Generalized Moment Selection,” unpublished manuscript.

Beresteanu, A., I. Molchanov, and F. Molinari (2008): “Sharp identification regions in games,”

cemmap working paper CWP15/08.

Beresteanu, A., and F. Molinari (2008): “Asymptotic properties for a class of partially identified mod-

els,” Econometrica, 76, 763–814.

Berry, S. (1992): “Estimation of a model of entry in the airline industry,” Econometrica, 60, 889–917.

Berry, S., and E. Tamer (2006): “Identification in models of oligopoly entry,” in Advances in Economics

and Econometrics, pp. 46–85. Cambridge University Press.

Bresnahan, T., and P. Reiss (1990): “Entry in monopoly markets,” Review of Economic Studies, 57,

531–553.

Canay, I. (2007): “Empirical Likelihood Inference for Partially Identified Models: Large Deviation Opti-

mality and Bootstrap Validity,” unpublished manuscript.

Castaldo, A., F. Maccheroni, and M. Marinacci (2004): “Random sets and their distributions,”

Sankhya (Series A), 66, 409–427.

Chernozhukov, V., H. Hong, and E. Tamer (2007): “Estimation and Confidence Regions for Parameter

Sets in Econometric Models,” Econometrica, 75, 1243–1285.

Choquet, G. (1954): “Theory of capacities,” Annales de l’Institut Fourier, 5, 131–295.

Ciliberto, F., and E. Tamer (2006): “Market structure and multiple equilibria in airline markets,” un-

published manuscript.

Echenique, F., and I. Komunjer (2008): “A test for monotone comparative statics.,” unpublished manu-

script.

Ekeland, I., A. Galichon, and M. Henry (2008): “Optimal transportation and the falsifiability of

incompletely specified economic models.,” accepted by Economic Theory.

Fan, Y. (2008): “Confidence Sets for Distributions of Treatment Effects With Covariates,” unpublished

manuscript.

Ford, L., and D. Fulkerson (1957): “A simple algorithm for finding maximal network flows and an

application to the Hitchcock problem,” Canadian Journal of Mathematics, 9, 210–218.

Galichon, A., and M. Henry (2006a): “Dilation Bootstrap. A methodology for constructing confidence

regions with partially identified models,” unpublished manuscript.

Galichon, A., and M. Henry (2006b): “Inference in incomplete models,” Columbia University Discussion

Paper 0506-28 available at http://www.columbia.edu/cu/economics/discpapr/DP0506-28.pdf.

Galichon, A., and M. Henry (2008): “A test of non-identifying restrictions and confidence regions for

partially identified parameters,” forthcoming Journal of Econometrics.

Gillies, D. (1953): “Some theorems on n-person games,” Princeton Ph.D.



28 ALFRED GALICHON† MARC HENRY§

Heckman, J., J. Smith, and N. Clements (1997): “Making the most out of programme evaluation and

social experiments: accounting for heterogeneity in programme impacts,” Review of Economic Studies, 64,

487–535.

Hitchcock, F. (1941): “The distribution of a product from several sources to numerous localities,” Journal

of Mathematics and Physics, 20, 224–230.

Imbens, G., and C. Manski (2004): “Confidence intervals for partially identified parameters,” Economet-

rica, 72, 1845–1859.

Jovanovic, B. (1989): “Observable implications of models with multiple equilibria,” Econometrica, 57,

1431–1437.

Kantorovich, L. (1942): “On the translocation of mass,” Doklady Academii Nauk SSSR, 37, 199–201.

Koopmans, T. (1949): “Optimum utilization of the transportation system,” Econometrica, 17, 136–146.

Manski, C. (1990): “Nonparametric bounds on treatment effects,” American Economic Review, 80, 319–

323.

Manski, C., and E. Tamer (2002): “Inference on Regressions with Interval Data on a Regressor or Out-

come,” Econometrica, 70, 519–546.

Milgrom, P., and J. Roberts (1990): “Rationalizability, learning and equilibrium in games with strategic

complementarities,” Econometrica, 58, 1255–1277.
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