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Abstract
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[...] a central bank seeking to maximize its probability of achieving its goals

is driven, I believe, to a risk-management approach to policy. By this I mean

that policymakers need to consider not only the most likely future path for the

economy but also the distribution of possible outcomes about that path.

Alan Greenspan, 2003.

1 Introduction

Understanding the uncertainty associated with a prediction is as important as the prediction

itself. When a prediction is made about a collection of future events — which we denominate a

path forecast — its uncertainty is encapsulated by the path forecast’s joint predictive density.

Therefore, information about the range of possible paths the predicted variable may follow

(for a given probability level) is contained in a simultaneous confidence region. Although

such a confidence region represents a correct probability statement about the set of possible

paths, it is a multi-dimensional ellipsoid. This makes communication of the path forecast’s

uncertainty difficult since, for example, it cannot be graphically presented in two-dimensional

space (except, of course, when the path is at most two periods in length).

Traditionally, the uncertainty associated with a forecasting exercise has been examined

with the marginal predictive density of the forecasts at each individual horizon. This is the

approach that has received the bulk of attention in the literature and can be found pre-coded

into most commercial econometric packages. The basic message of this paper is that there

are many questions of interest that require knowledge of the joint predictive density and

appropriate statistics for which the collection of marginal predictive densities and traditional
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statistics are inadequate.

The first contribution of our paper is to propose new methods to construct an approximate

two-dimensional simultaneous confidence region that summarizes the uncertainty about the

variability of the path forecast that is most interesting to end-users of the forecasting exercise.

In Section 2 we show that this region focuses the space of alternative hypotheses onto a

particular subspace of linear combinations of forecasts that best represents paths of interest

rather than providing a probability bound (as the well known Bonferroni procedure does).

This region is constructed with Scheffé’s (1953, 1959) S-method of simultaneous inference.

As a result, our simultaneous confidence bands (which we denominate Scheffé bands) provide

approximate control of the family-wise error rate (or FWER, which loosely speaking is the

probability that one or more of the hypotheses is rejected when the joint null is true1 ) while

at the same time increasing the power of the joint null hypotheses implied by the Scheffé

bands. This approach is similar to that proposed by Jordà (2008) for impulse response

functions.

Another way to evaluate a system’s path forecasts is to examine the local consistency

of the predictive exercise and measure how the paths predicted for some variables vary

in response to alternative assumptions on how the paths for the other variables evolve.

For example, the Bank of England’s inflation report (available from their website) reports

two-year inflation and gross domestic product (GDP) forecasts conditional on a variety of

assumptions about the path of interest rates. A second contribution of our paper is to provide

a simple protocol with which to evaluate the coherence of the experiment with respect to the

1 See, e.g., Hochberg and Tahmane, 1987; or Lehmann and Romano, 2005 for a formal definition.
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historical experience, as well as the relative exogeneity of the path forecasts to the selected

experiments. Coherence and exogeneity can be measured from the path forecasts’ predictive

density with the Mahalanobis (1936) distance.2

Section 3 of the paper derives the asymptotic distribution of the path forecasts for a class

of models frequently used in practice, whereas the small sample properties of the methods we

propose are investigated via Monte Carlo simulations in Section 4. Specifically, we simulate

data from the VAR process discussed in Stock and Watson’s (2001) review article and show

that using different estimation methods, different forecasting horizons, and different metrics

of performance, traditional marginal bands provide very poor and unreliable coverage — a

problem that is successfully addressed with the methods that we introduce. Section 5 displays

our methods in action with a forecasting exercise of the most recent monetary episode of

interest rate hikes experienced in the U.S., beginning June, 2003. Finally, directions for

further research are outlined in Section 6, which summarizes the main results of the paper

and draws some conclusions.

2 Measuring Path Forecast Uncertainty

This section considers how to measure the uncertainty surrounding a collection of forecasts

1 to H periods into the future (an H-dimensional path forecast) for a variable in a K-

dimensional system {yt}Tt=1.3 The simultaneous confidence regions that we construct for

this purpose are based on the assumption that the path forecasts are distributed multivari-

2 The Mahanalobis (1936) distance between to n-dimensional vectors, say u and v, with common n × n
covariance matrix Ω is given by (u− v)0Ω−1(u− v).

3 Although the results in this section could have been discussed in the context of univariate path forecasts,
we present them for systems instead to incorporate into the forecast information from exogenous variables in
a more natural way. In addition, systems provide a natural sageway for the discussion in Section 2.3.
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ate Gaussian (at least in large samples); Scheffé’s (1953, 1959) S-method of simultaneous

inference; and on a step-down testing recursion. In practice, although the multivariate dis-

tribution of the data is unknown, for H not too large relative to the estimation sample size R

(a mnemonic for “regression,” where R < T ) and conditionally on the information on which

the forecasts are produced, the assumption of Gaussianity can be justified under rather gen-

eral conditions. As an example, in Section 3 we derive asymptotic Gaussian approximations

for homogeneous, covariance-stationary processes whose forecasts are generated with either

vector autoregressions (VARs) or direct forecasts (see, e.g. Marcellino, Stock and Watson,

2006).

Although the derivations in Section 3 cover many practical situations in applied work,

there are many others where one cannot justify common large sample approximations. A

simple example of this failure is readily seen for forecasts generated with fixed-size rolling

windows (rather than windows whose size is allowed to grow with the sample), or when

predicting autoregressive-moving average (ARMA) models with residuals that exhibit gener-

alized autoregressive conditional heteroskedasticity (GARCH). In the latter case, Baillie and

Bollerslev (1992) show that the predictive density has to be approximated with, for example,

a Cornish-Fisher expansion.

These examples would seem to limit the scope of our results somewhat. However, Ring-

land (1983) shows that relative to Bonferroni and to modulus multiple inference methods

(see, e.g., Hochberg and Tahmane, 1987), the Scheffé (1953, 1959) S-method that forms the

basis of our procedures, is robust and stable under general forms of non-normality and for a

variety of M-estimators.
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2.1 Null Hypotheses and Confidence Regions

Let yτ be a K-dimensional random vector and denote byτ (h) = bE(yτ+h|yτ ,yτ−1, ...) where
the sample size used to estimate the parameters required to generate byτ (h) is R and {τ : R ≤
τ ≤ T −H}. We do not make primitive assumptions on the stochastic process {yt} because

the focus of this section is not about how to derive Gaussian large sample approximations

but rather how to derive appropriate methods of simultaneous inference. Instead, denote

bYτ (H) and Yτ ,H the predicted and observed paths

bYτ (H) =
⎡⎢⎢⎢⎢⎢⎢⎣
byτ (1)
...

byτ (H)

⎤⎥⎥⎥⎥⎥⎥⎦ ; Yτ ,HKH×1
=

⎡⎢⎢⎢⎢⎢⎢⎣
yτ+1

...

yτ+H

⎤⎥⎥⎥⎥⎥⎥⎦ .

Then, the derivations that follow are based on the following convenient assumption.

Condition 1
√
R
³bYτ (H)− Yτ ,H |yτ ,yτ−1, ...´ d→ N (0,ΞH) as R→∞

and an estimate bΞH is available such that (with a slight abuse of notation): bΞH p→ ΞH

Specific analytic expressions for ΞH are obtained trivially when one assumes directly

that {yt} is Gaussian. In Section 3, we relax this assumption for forecasts generated from

a VAR or with direct forecasts (e.g. Jordà, 2005; Marcellino, Stock and Watson, 2006)

and provide appropriate analytic expressions. Other relevant references for specific results

on ΞH include, among others, Clements and Hendry (1993) and Lütkepohl (2005). The

assumption of normality is convenient but not crucial so that distributions belonging to the

exponential family, or elliptic distributions (see Mitchell and Krzanowski, 1985) would be

easily accommodated in our discussion.
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In what follows, we focus on the path forecasts for each of the variables in yt, one at a

time. Define the selector matrix Sk ≡ (IH ⊗ ek) where ek is the kth row of IK . Then from

condition 1, the distribution of the path forecast for the kth variable in yt is approximately

√
R
³bYk,τ (H)− Yk,τ ,H |yτ ,yτ−1, ...´ d→ N

¡
0,Ξk,H

¢
where bYk,τ (H) = Sk bYτ (H);Yk,τ ,H = SkYτ ,H ; and Ξk,H = SkΞHS0k.

Next, we are interested in constructing a confidence region based on inverting the statistic

for the null hypothesis

H0 : E
³bYk,τ (H)− Yk,τ ,H |yτ ,yτ−1, ...´ = 0 versus (1)

H1 : E
³bYk,τ (H)− Yk,τ ,H |yτ ,yτ−1, ...´ 6= 0 for k = 1, ...,K.

This null hypothesis can be expressed as the intersection of the family of hypotheses

H0h : E (byk,τ (h)− yk,τ+h|yτ ,yτ−1, ...) = 0 versus (2)

H1h : E (byk,τ (h)− yk,τ+h|yτ ,yτ−1, ...) 6= 0 for k = 1, ...,K and h = 1, ...,H.

Clearly, it is the case that H0 = ∩Hh=1H0h and H1 = ∪Hh=1H1h. The rejection regions of the

tests for the individual hypotheses are given by the well-known studentized ratios

|Th| = |byk,τ (h)− yk,τ+h|q
Ξk(h,h)
R

> ξh;h = 1, ...,H; k = 1, ...,K

where Ξk(h, h) refers to the (h, h) diagonal entry of the covariance matrix Ξk,H and ξh can

be determined for a given size α as

Pr (|Th| > ξh) = α.

Customarily in forecasting applications, confidence regions for forecasts at different horizons

have been constructed by setting ξh = ξ ∀h and then selecting ξ as the critical value from
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a standard normal random variable (or t-distribution when small sample results are invoked

instead) with probability level α/2, that is ξ = zα/2. This tradition, of course, ignores the

simultaneous nature of the problem in expressions (1)-(2) as well as any correlation among

the Th. As a consequence, this procedure results in the probability that one or more of the

null hypothesis (2) will be rejected that increases toward one with H.

If instead one is interested in controlling the probability of making any error given a family

of inferences (i.e., control of the family-wise error rate, FWER), then the union-intersection

method proposed by Roy (1953) can be used to ensure FWER ≤ α by choosing a test of

the null in (1) that rejects if

max
1≤h≤H

|Th| > ξ∗. (3)

Roy and Bose (1953) show that

max
1≤h≤H

T 2h = R
³bYk,τ (H)− Yk,τ ,H´0 Ξ−1k,H ³bYk,τ (H)− Yk,τ ,H´ (4)

which demonstrates the correspondence between testing the null (1) and the intersection of

the family of nulls in (2). Scheffé (1953, 1959) generalizes this result and shows that any

test of non-null linear combinations of bYk,τ (H) has the same distribution — in other words,
when the joint null (1) is rejected, it gives a basis for data-snooping which of the elementary

hypotheses most likely generated the rejection without requiring further adjustments to the

distribution of these statistics. Savin (1980, 1984) provides formal derivations of (4) both in

small samples (under the common t-distribution/F -distribution results) and in large samples

(with the normal/chi-square approximations) in econometrics.
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Without loss of generality and in order to construct confidence bands for the path fore-

casts bYk,τ (H), we find it convenient to proceed with the orthogonalized studentized ratios
T ∗h =

bzk,τ (h)√
R

d→ N(0, 1)

where bzk,τ (h) is the hth entry of the vector bZk,τ (H) = P−1(bYk,τ (H)−Yk,τ ,H) and Ξk,H = PP 0
with P the lower triangular Cholesky decomposition of Ξk,H . In practical terms, this is simply

a projection of the forecast at time τ +h onto the vector of forecasts from τ +1 to τ +h− 1.

Under condition 1 and result (4), the null hypothesis (1) can be tested with the familiar

Wald statistic

WH = R
³bYk,τ (H)− Yk,τ ,H´0 Ξ−1k,H ³bYk,τ (H)− Yk,τ ,H´ d→ χ2H . (5)

The proposed orthogonalization transforms this Wald statistic into

WH =
HX
h=1

T ∗
2

h
d→ χ2H (6)

where now the T ∗2h have the interpretation of being uncorrelated (and standarized) t-statistics

of the null that the average deviation of byk,τ (h) from yk,τ+h is zero, conditional on the path

forecast over periods 1 to (h− 1), i.e., bYk,τ (h− 1).
A simultaneous confidence interval for bZk,τ (H) (and hence bYk,τ (H)) can therefore be

easily constructed by inverting the Wald statistic (6) so that

Pr

"
HX
h−1

T ∗
2

h ≤ c2α(H)
#
= 1− α (7)

for any probability level α of interest and with c2α(H) the critical value of a random variable

distributed as χ2H (or, if invoking finite sample results, by choosingHc
∗
α(H,R) where c

∗
α(H,R)

is the critical value of a random variable distributed FH,R). This confidence region is readily
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seen to be an H-dimensional sphere, which for H = 2 results in a circumference that is

plotted in Figure 1 for α = 0.05.

The simultaneous confidence region (7) displayed in Figure 1 makes clear that the in-

duced test for the hypotheses (2) is given by expressions (3) and (4) and specifically for the

orthogonalized studentized ratios

max
1≤h≤H

|T ∗h | > ξ∗

with

Pr( max
1≤h≤H

|T ∗h | > ξ∗) = α (8)

so that ξ∗ = c2α(H) (see Savin, 1984). Figure 1 clarifies this result: the most T ∗1 can stray

away from the origin to the 95% confidence circumference is when T ∗2 = 0, and vice versa.

2.2 Family-Wise versus Simultaneous Error Rate Control

Choosing ξ∗ = c2α(H) ensures that FWER ≤ α but this is not a very useful metric for paths.

The reason is that control of FWER guards against such extremes as when all forecasts

in a path exactly match the future realizations of the predicted variable except for one

specific horizon, onto which the entire probability mass of the forecast path is concentrated.

For some financial applications where one is interested in insuring against extreme risks,

control of FWER may make sense. However, in most other applications of path forecasting

(specially in macroeconomics), power can be improved by appropriately restricting the range

of possible alternatives and for this reason, we introduce two modifications to the previous

procedures.

The first modification consists in limiting the space of alternative hypotheses to those

that spread the uncertainty in the orthogonalized path forecast evenly over all horizons. We
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achieve this by maximizing the joint probability surface of the orthogonalized system implied

by the T ∗h for h = 1, ...,H (rather than maximizing the Tschebyshev distance as is done in

expression (8)) and hence by directly controlling the Mahalanobis (1936) distance (or MD)

between bYk,τ (H) and the range of possible paths. MD corresponds to the distance implied

by the Wald statistic4 in expression (5). The second modification comes from the realization

that the bounds implied in (8) depend on the choice of H: for example, the size of the one-

period ahead error bands will vary depending on whether the path forecast is two, three,

four, ..., H periods in length. This is somewhat unappealing but can be easily corrected as we

will show. Incorporating these two modifications inevitably deteriorates control of FWER

but as the Monte Carlo experiments of Section 4 show, the trade-off turns out to be very

modest and the new procedures control the simultaneous Mahalanobis (or Wald) distance

very well.

We begin by discussing the first of our modifications. The desire to spread uncertainty

evenly across the path can be recast by modifying expression (8) where interest is now in

finding δ∗ such that

Pr

Ã
max

¯̄̄̄
¯
HX
h=1

1

H
T ∗h

¯̄̄̄
¯ > δ∗

!
= α. (9)

The objective of maximizing the average allocation of the path’s uncertainty across periods

has the effect of maximizing the probability region covered by the bands in terms of MD.

The example in Figure 1 can be useful in clarifying this concept. MD compares the square

distances between two vectors by weighting the vectors with the inverse of their covariance

4 Although Prasanta Mahalanobis published his paper in (1936) it was Abraham Wald’s (1943) paper that
provided the statistical foundations of what today is known as the Wald statistic.
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matrix, the same way that the Wald statistic would for a typical joint hypothesis test as is

done in expression (5). In Figure 1, notice that the T ∗h h = 1, 2 have been orthogonalized so

that the weighting matrix is the identity and hence, the objective is to find T ∗1 and T ∗2 such

that

Pr

µ
max

¯̄̄̄
1

2
T ∗1 +

1

2
T ∗2

¯̄̄̄
≤ δ∗

¶
= 1− α.

This probability region is maximized when T ∗1 = T ∗2 so that the bands for each test can be

easily calculated since, for example from (5)

Pr
³
2T ∗

2

1 ≤ c2α(2)
´
= Pr

Ã
|T ∗1 | ≤

r
c2α(2)

2

!
= 1− α

and similarly for T ∗2 from where it is clear that δ∗ =
p
c2α(2)/2.

Scheffé’s (1953, 1959) S-method gives simultaneous confidence regions for any non-null

linear combination
PH
h=1 uhT

∗
h where u = (u1, ..., uh), is such that u ∈ U, the set of non-null

linear combinations of (T ∗1 , ..., T ∗h ) . In order to calculate δ
∗ in expression (9), we use Bowden’s

(1970) lemma, which states that

max

⎧⎨⎩
¯̄̄PH

h=1 uhT
∗
h

¯̄̄
qPH

h=1 u
2
h

: |uh| <∞
⎫⎬⎭ =

vuut HX
h=1

T ∗2h .

Hence, from the confidence region derived in (7) and out of the Wald statistic in (5), recall

that we have that

Pr

Ã
HX
h=1

T ∗
2

h ≤ c2α(H)
!
= 1− α

and by Bowden’s (1970) lemma we can rewrite this expression as

Pr

⎛⎝max
⎧⎨⎩
¯̄̄PH

h=1 uhT
∗
h

¯̄̄
qPH

h=1 u
2
h

⎫⎬⎭ ≤
p
c2α(H)

⎞⎠ = 1− α
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which for uh = 1/H becomes

Pr

⎛⎝max(¯̄̄̄¯
HX
h=1

1

H
T ∗h

¯̄̄̄
¯
)
≤
p
c2α(H)

vuut HX
h=1

1

H2

⎞⎠ = 1− α

so that clearly

δ∗ =

r
c2α(H)

H

and therefore a simultaneous (1-α)% confidence region for the original path forecast would

be

bYk,τ (H)± P Ãrc2α(H)
H

iH

!
(10)

where iH is an H × 1 vector of ones.

Error bands derived from expression (10) are simple to construct but, as discussed earlier,

have the somewhat undesirable feature that they depend on H. For example, the width of

the one-period ahead error bands declines as a function of H because as we increase H, we

are considering the joint variation of a path with more and more elements and this limits how

much any one of these individual elements can fluctuate. Therefore, the second modification

that we propose is to refine our simultaneous confidence region with a step-down recursive

procedure (for examples of step-down procedures see Lehmann and Romano, 2005. Perhaps

the best known of such procedures is Holm, 1979).

Notice that for any H,
p
c2α(h)/h ≥

p
c2α(H)/H for h ≤ H and hence(

Yk,τ ,H : Yk,τ ,H ∈ bYk,τ (H)± Prc2α(H)
H

iH

)
⊂
⎧⎨⎩Yk,τ ,H : Yk,τ ,H ∈ bYk,τ (H)± P

"r
c2α(h)

h

#H
h=1

⎫⎬⎭
where

·q
c2α(h)
h

¸H
h=1

refers to the H × 1 vector whose hth entry is pc2α(h)/h and hence the
region defined by

bYk,τ (H)± P "rc2α(h)
h

#H
h=1

(11)
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includes all paths in (10). However in (11) the bands for forecasts at horizon h are no longer

functions of the overall length of the forecast vector the researcher chooses to plot thereafter.

We end this section with two final notes. First, notice that by projecting each forecast

on the antecedent forecast path (as is done to orthogonalize the Th into T ∗h in expression

(6)), allows one to consider the forecast uncertainty associated with each individual horizon

irrespective of the path followed to reach that particular period. Hence, it is easy to construct

the region that corresponds to the individual tests of the conditional nulls

Hc
0h : E

³byk,τ (h)− yk,τ+h|bYk,τ (h− 1),yτ ,yτ−1, ...´ = 0 versus (12)

Hc
1h : E

³byk,τ (h)− yk,τ+h|bYk,τ (h− 1),yτ ,yτ−1, ...´ 6= 0 for k = 1, ...,K and h = 1, ...,H.

as

bYk,τ (H)± zα/2diag(P )
where the operator diag(P ) takes the diagonal elements of the matrix P and stacks them

into a H × 1 vector. These conditional error bands summarize the uncertainty associated

to each point forecast independently of the uncertainty associated with previous forecasts in

the path. Second, in order to evaluate the statistical properties of our testing procedures,

Section 4 below provides Monte Carlo experiments where coverage is calculated with respect

to control of FWER as is convention, but where control of the error rate of the joint test

implied by the Mahalanobis (1936) distance in (9) is clearly more appropriate for paths. For

this reason, our Monte Carlo experiments report both metrics.
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2.3 Conditional Path Forecast Evaluation with the Mahalanobis Distance

Scheffé confidence bands, whether reported for a given 100(1 − α)% confidence level or

reported in the form of a fan chart for a collection of different confidence levels, are a natural

way for the professional forecaster to communicate the accuracy of the forecasting exercise.

However, when the exercise involves more than one predicted variable, it is often of interest

for the end-user to have a means to evaluate the local internal consistency of forecasts across

variables. For example, the Bank of England’s quarterly Inflation Report (available from

their web-site) provides GDP and inflation, two-year ahead projections based on “market

interest rate expectations” and projections based on “constant nominal interest rate” paths.

Alternatively, it is not difficult to envision a policy maker’s interest in examining inflation

forecasts based on an array of different assumptions on the future path of crude oil prices, for

example. Obviously such checks are not meant to uncover the nature of structural relations

between variables, nor provide guidance about the effects of specific policy interventions,

both of which, from a statistical point of view, fall into the broad theme of the treatment

evaluation literature (see, e.g. Cameron and Trivedi, 2005 for numerous references) and are

not discussed here.5

Rather, the objective is to investigate the properties of the forecast exercise in a local

neighborhood. Accordingly, for a given K-dimensional vector of path forecasts, it will be of

interest: (1) to derive how forecasts for a k0-dimensional subset of variables vary if the path

forecasts of the remaining k1 variables in the system (i.e. K = k0 + k1; 1 ≤ k1 < K) are

set to follow paths different from those originally predicted; (2) to evaluate whether the k1

5 An example of papers with this bend are Leeper and Zha (2003) and Waggoner and Zha (1999), which
examine counterfactual experimentation in the context of forecasting models using Bayesian techniques.
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alternative paths considered deviate substantially from the observed historical record; and

(3) to examine how sensitive the k0 variables are to variations in these alternative scenarios.

Mechanically speaking, an approximate answer to question (1) can be easily derived from

the multivariate Gaussian large-sample approximation to the joint predictive density and the

linear projection properties of the multivariate normal distribution. Specifically, define the

selector matrices S0 = IH ⊗E0; and S1 = IH ⊗E1 where E0 and E1 are k0 ×K and k1 ×K

matrices formed from the rows of IK corresponding to the indices in k0 and k1 respectively.

Let eY 1τ (H) denote the alternative paths considered for the k1 variables and let eY 0τ (H) denote
the paths of the k0 variables given eY 1τ (H), that is

eY 0τ (H) = S0bYτ (H) + S0ΞHS01 ¡S1ΞHS01¢−1 ³eY 1τ (H)− S1 bYτ (H)´
with covariance matrix Ξ0H = S0ΞHS

0
0 − S0ΞHS01 (S1ΞHS01)−1 S1ΞHS0. In practice, the ap-

proximate nature of the predictive density of bYτ (H) indicates that the accuracy of these
calculations depends on several factors such as the value of H relative to the estimation

sample R, possible nonlinearities in the data, and the distance between eY 1τ (H) and S1bYτ (H),
among the more important factors.

The last observation suggests that it is useful to properly evaluate the Mahalanobis

distance between eY 1τ (H) and S1bYτ (H) and this can be easily accomplished with
W1 = R(S1 bYτ (H)− eY 1τ (H))0 ¡S1ΞHS01¢−1 (S1bYτ (H)− eY 1τ (H))

This score will have an approximate chi-square distribution with k1H degrees of freedom

when condition 1 can be invoked. Thus, one minus the p-value of this score provides and easy

to communicate distance metric in probability units between the predicted paths S1 bYτ (H)
15



and the alternative scenarios eY 1τ (H). The bigger this probability distance, the more the
alternative scenarios strain the forecasting exercise toward regions in which the model has

received little to no training by sample and the more one has to rely on the estimated

econometric model being the true unknown DGP.

Similarly, it is of interest to evaluate which path forecasts from the k0 variables are most

sensitive to the alternative scenarios of the k1 variables. This sensitivity can be evaluated

with

W0 = R
³
S0bYτ (H)− eY 0τ (H)´0 ¡S0ΞHS00¢−1 ³S0bYτ (H)− eY 0τ (H)´

When condition 1 can be invoked, this score will have an approximate chi-square distribution

with k0H degrees of freedom. Thus, p-values of this score below conventional significance

values (say 0.05 for 95% confidence levels) indicate that the k0 forecast paths are not exoge-

nous to variations in the forecast paths of the k1 variables and hence care should be taken

that the W1 score is kept sufficiently low. Thus, it seems wise that any forecasting report

should routinely include both the W0 and W1 scores since they can be easily calculated in

practice.

3 Asymptotic Distribution of the Forecast Path

This section characterizes the asymptotic distribution of the path forecast under the assump-

tion that the data generating process (DGP) is possibly of infinite order while the forecasts

are generated by finite-order VARs or finite-order direct forecasts. This DGP is sufficiently

general to represent a large class of problems of practical interest, and VARs and direct

forecasts are the two most commonly used forecasting strategies. Formal presentation of

assumptions, corollaries and proofs are reserved for the appendix. Here we sketch the main
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ideas.

Suppose the K-dimensional vector of weakly stationary variables {yt} has a possibly

infinite VAR representation given by

yt =m+
∞X
j=1

Ajyt−j + ut

whose statistical properties are collected in assumptions 1 and 2 in the appendix. Given this

DGP, one can either estimate a VAR(p), such as

yt = m+

pX
j=1

Ajyt−j +wt (13)

wt =
∞X

j=p+1

Ajyt−j + ut

from which forecasts can be constructed with standard available formulas (see, e.g. Hamilton,

1994). Alternatively, forecasts could be constructed with a sequence of direct forecasts given

by

yt+h = mh +

p−1X
j=0

Ahjyt−j + vt+h (14)

vt+h =
∞X
j=p

Ahjyt−j + ut+h +
h−1X
j=1

Φjut+h−j for h = 1, ...,H

where Ah1 = Φh for h ≥ 1; Ahj = Φh−1Aj+Ah−1j+1 for h ≥ 1;A0j+1 = 0;Φ0 = IK ; and j ≥ 1. Let

Γ (j) ≡ E
³
yty

0
t+j

´
with Γ (−j) = Γ (j)0 and define: Xt,p =

¡
1,y0t−1, ...,y0t−p

¢0
; bΓ1−p,h
Kp+1×K

=

(R− p− h)−1PR
t=pXt,py

0
t+h; and bΓp

K(p+1)×K(p+1)
= (R− p− h)−1PR

t=pXt,pX
0
t,p. Then, the

least-squares estimate of the VAR(p) in expression (13) is given by the formula

bA (p)
K×Kp+1

=
³ bm, bA1, ..., bAp´ = bΓ01−p,0bΓ−1p , (15)
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whereas the coefficients of the mean-squared error linear predictor of yt+h based on yt, ...,yt−p+1

is given by the least-squares formula

bA (p, h)
K×Kp+1

=
³ bmh, bAh1 , ..., bAhp´ = bΓ01−p,hbΓ−1p ; h = 1, ...,H. (16)

Then, corollary 1 in the appendix shows that the parameter estimates in expressions (15)

and (16) are consistent and asymptotically Gaussian.

Next, denote with yτ (h) the forecast of the vector yτ+h assuming the coefficients of the

infinite order process (21) were known. Notice that we have now changed the subscript from

t to τ to reflect forecasts obtained in the interval R ≤ τ ≤ T −H, that is

yτ (h) =m+
∞X
j=1

Ajyτ (h− j)

where yτ (h− j) = yτ+h−j for h−j ≤ 0. Denote byτ (h) the forecast that relies on coefficients
estimated from a sample of size R and based on a finite order VAR or direct forecasts,

respectively

byτ (h) = bm+

pX
j=1

bAjbyτ (h− j)
byτ (h) = bmh +

p−1X
j=0

bAhjyτ−j
where byτ (h− j) = yτ+h−j for h − j ≤ 0. To economize in notation, we do not introduce

a subscript that identifies how the forecast path was constructed as it should be obvious in

the context of the derivations we provide. Then, define the forecast path for h = 1, ...,H by

stacking each of the quantities byτ (h) , yτ (h) , and yτ+h as follows
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bYτ (H)
KH×1

=

⎡⎢⎢⎢⎢⎢⎢⎣
byτ (1)
...

byτ (H)

⎤⎥⎥⎥⎥⎥⎥⎦ ;Yτ (H)KH×1
=

⎡⎢⎢⎢⎢⎢⎢⎣
yτ (1)

...

yτ (H)

⎤⎥⎥⎥⎥⎥⎥⎦ ; Yτ ,HKH×1
=

⎡⎢⎢⎢⎢⎢⎢⎣
yτ+1

...

yτ+H

⎤⎥⎥⎥⎥⎥⎥⎦ .

Our interest is in finding the asymptotic distribution for bYτ (H)−Yτ ,H = hbYτ (H)− Yτ (H)i
+ [Yτ (H)− Yτ ,H ] , conditional on information up to time τ , R ≤ τ ≤ T −H.

It should be clear that [Yτ (H)− Yτ ,H ] does not depend on the estimation method and

hence its mean-squared error can be easily verified to be

ΩH
KH×KH

≡ E £(Yτ (H)− Yτ ,H) (Yτ (H)− Yτ ,H)0¤ = Φ (IH ⊗ Σu)Φ0. (17)

where

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IK 0 ... 0

Φ1 IK ... 0

...
... ...

...

Φh−1 Φh−2 ... IK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Furthermore, since the parameter estimates are based on a sample of size R and hence ut

for t ∈ {p + h, ..., R} while the term Yτ (H) − Yτ ,H only involves uτ for τ ∈ {R + 1, ..., T},

then it should be clear that to derive the asymptotic distribution of
hbYτ (H)− Yτ (H)i ,

the asymptotic covariance of the forecast path will simply be the sum of the asymptotic

covariance for this term and the mean-squared error in expression (17) but the covariance

between these terms will be zero.

Corollary 1(a) and 1(b) in the appendix and the observation that bYτ (H) is simply a
function of estimated parameters and predetermined variables is all we need to conclude
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that s
R− p−H

p
vec

³bYτ (H)− Yτ (H) |yτ ,yτ−1, ...´ d→ N (0,ΨH) (18)

ΨH ≡
∂vec

³bYτ (H)´
∂vec

³bA´ ΣA
∂vec

³bYτ (H)´
∂vec

³bA´0
where ΣA is the covariance matrix for vec

³bA´ ; with bA = bA (p) for estimates from a VAR(p) ;
and for estimates from local projections

bA =

⎡⎢⎢⎢⎢⎢⎢⎣
bA (p, 1)
...

bA (p,H)

⎤⎥⎥⎥⎥⎥⎥⎦ . (19)

Therefore, corollaries 2 and 3 in the appendix contain the analytic formulas that show thats
R− p−H

p
vec

³bYτ (H)− Yτ ,H´ d→ N (0;ΞH)

ΞH =

½
p

R− p−HΩH +ΨH
¾

ΩH = Φ(IH ⊗ Σu)Φ0

were the specific analytic expression of ΨH depends on whether a VAR(p) or direct forecasts

are used. The appendix contains the specific formulae in each case.

4 Small Sample Monte Carlo Experiments

This section compares the probability coverage of traditional marginal error bands, bands

constructed with the Bonferroni procedure, and Scheffé bands with a small-scale simulation

study. In setting up the DGP for the simulations our objective was to choose a forecasting

exercise that would be representative of situations researchers will likely encounter in practice.
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In addition and to avoid the arbitrary nature of parameter choices and model specifications

common to Monte Carlo experiments, we borrowed a well-known empirical specification

directly from the literature, specifically Stock and Watson’s (2001) well-cited review article

on vector autoregressions (VARs).

The specification discussed therein examines a three-variable system (inflation, measured

by the chain-weighted GDP price index; unemployment, measured by the civilian unem-

ployment rate; and the average federal funds rate) that is observed quarterly over a sample

beginning the first quarter of 1960 and that we extend to the first quarter of 2007 (188

observations). Their VAR is estimated with four lags.

The DGP for our experiments is therefore constructed from this VAR specification as

follows. First, we estimate a VAR(4) on the sample of data just described except for the last

12 observations (3 years worth), which we save to do some out-of-sample exercises later on

(reported in Figure 2). We collect the least-squares parameter estimates of the conditional

means and the residual covariance matrix to generate the simulated samples of data of size

T = 100, 400 (these are always initialized using the first four observations from the data for

consistency across runs). We constructed 1,000 Monte Carlo replications of each sample size

in this fashion.

At each replication the VAR’s lag length is determined empirically (rather than cho-

sen to be its true value of four) with the information criterion AICC — a correction to the

traditional AIC, specially designed for VARs by Hurvich and Tsai (1993).6 Next, each

replication involves estimating a VAR and direct forecasts by least-squares and hence gen-

6 Hurvich and Tsai (1993) show that AICc has better small sample properties than AIC, SIC and other
common information criteria.
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erating appropriate forecast error variances for forecast paths of varying length (specifically

for H = 1, 4, 8, and 12 or one quarter and one, two and three years ahead) that include

forecast error uncertainty as well as estimation error uncertainty as the previous section

showed. Thus, each replication produces two sets of estimates (VAR and direct forecasts)

with which we construct traditional marginal bands, Bonferroni bands and Scheffé bands;

one and two standard deviations in width (the traditional choices in the literature), which

roughly correspond with 68% and 95% probability coverage, respectively. These bands and

forecasts are computed for each of the three variables (inflation, the unemployment rate and

the federal funds rate) in the system and they are reported separately.

In order to assess the empirical coverage of these three sets of bands, we then generated

1,000 draws from the known model and multivariate distribution of the residuals in the DGP

and hence constructed 1,000 paths conditional on the last four observations in the data (since

the DGP is a VAR(4)). These conditioning observations are used to homogenize the analysis

in all the Monte Carlo runs and thus facilitate comparability.

The empirical coverage of each set of bands is then evaluated with the two metrics dis-

cussed in Section 2. The FWER metric looks at the proportion of paths that fall completely

within the bands, without regard of whether the joint variation of the elements respects the

Wald metric or not. For example, a 12-period ahead forecast path in which, say, only one

forecast out of the 12 fell outside the bands, would be considered “not covered.”

The Mahalanobis/Wald (Wald) metric constructs the value of the Wald statistic asso-

ciated with the bands and with each of the 1,000 predicted paths. Hence we compute the

proportion of predicted paths with Wald scores lower than those for the bands. Using the
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previous example, a 12-period forecast path that had one element outside the bands would

be counted as “covered” as long as its Wald score was lower than that for the bands. Con-

versely, a path could have no individual element violate the Bonferroni bound per se, yet

taking all elements together as a path, they could violate the Wald score.

The results of these experiments are reported in Tables 1 (for VAR-based forecasts ) and

2 (for direct forecasts) for forecast horizons H = 1, 4, 8, and 12; for each of the three variables

in the VAR (with mnemonics P for inflation, UN for the unemployment rate; and FF for the

federal funds rate). In addition, Figure 2 displays what the three types of bands (marginal,

Bonferroni and Scheffé) look like for an out-of-sample, two-year ahead path forecast from

the VAR estimated with the actual data.

From Tables 1 and 2, for one-period ahead forecasts (where the three methods coincide),

coverage rates under either metric are very close to nominal values even in small samples.

However, as the forecasting horizon increases, several important results emerge. The most

evident is the severely distorted coverage provided by marginal bands. In terms of FWER

metric, the empirical coverage is in the neighborhood of 15% for nominal coverage 68%. These

distortions are even more dramatic in terms of the Wald metric, with empirical coverage

below 1% for H = 12 and nominal coverage 68%. At higher coverage levels (95%) the

distortions are less dramatic although still considerable (for H = 12, the FWER empirical

coverage is around the mid-70’s% although Wald coverage can sometimes be in the low

20’s%). Bonferroni’s procedure generates bands that correctly control FWER across all

forecast horizons and nominal coverage levels and with empirical coverage close to 95%

confidence levels even with H = 12. However, there are considerable distortions in terms of
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Wald coverage, with empirical levels around 40% for 68% nominal coverage and H = 12.

Scheffé bands provide the most accurate match between empirical and nominal Wald

coverage rates, at all horizons, and at all confidence levels; yet these bands have small

distortions in terms of FWER metric, usually within 10% of the corresponding nominal

values, thus providing the best overall balance between these two metrics and empirical

coverage of all three methods (marginal, Bonferroni and Scheffé). Finally, we did not observe

significant differences in performance between forecasts generated from VARs or from direct

forecasts.

As a complement to these results, we experimented with a simple AR(1) model whose

autoregressive coefficient (ρ) was allowed to vary between 0.5 and 0.9. We did not consider

smaller values because at longer horizons the forecasts quickly revert to their unconditional

mean. For example, if ρ = 0.5 notice that ρ12 = 0.000244. Further, we isolated the effects

of parameter uncertainty, model misspecification, and other sources of model uncertainty to

focus exclusively on forecasting uncertainty generated from the arrival of shocks. Insofar as

the leading root of higher order processes often provides a good summary of its dynamic

properties, we felt that this small-scale set of experiments elucidates for practitioners vari-

ations in band coverage as a function of the persistence of the process considered. These

results are reported in Table 3 and use 1,000 Monte Carlo replications.

The simulations generally replicate the findings of the VAR examples considered above.

As one would expect, the more persistence, the more correlation among the elements of

the forecast path and the worse the coverage of the marginal bands. The same is true for

Bonferroni bands although the distortions are less severe (and at 95% confidence levels, often
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behave quite reasonably). Predictably, the same situations that make marginal bands fail

(high correlation among elements of the forecast path), are the situations were correcting for

this correlation pays-off. Hence Scheffé bands tend to do considerably better the higher the

value of ρ.

No Monte Carlo exercise is ever exhaustive of all the situations practitioners may en-

counter in practice. However, the results from our simulations clearly indicate that tradi-

tional marginal bands provide particularly poor coverage, the worse the more persistence in

the data. If interest is in controlling the FWER, Bonferroni bands work relatively well but

may provide poor Wald coverage. In contrast, Scheffé bands manage to strike a convenient

balance between FWER andWald control and their coverage is relatively robust to all sorts

of coverage levels and forecast horizon choices.

5 A Macroeconomic Forecasting Exercise

On June 30, 2004, the Federal Open Market Committee (FOMC) raised the federal funds

rate (the U.S. key monetary policy rate) from 1% to 1.25% — a level it had not reached since

interest rates were last changed from 1.5% to 1.25% on November 6, 2002. For more than

a year before the June 30, 2004 change, the Federal Reserve had kept the federal funds rate

fixed at 1%. This section examines forecasts of the U.S. economy on the eve of the first in a

series of interest rate increases that would culminate two years later, on June 29, 2006, with

the federal funds rate at 5.25%.

Our out-of-sample forecast exercise examines U.S. real GDP growth (in yearly percentage

terms, and seasonally adjusted); inflation (measured by the personal consumption expendi-

tures deflator, in yearly percentage terms, and seasonally adjusted); the federal funds rate;
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and the 10 year Treasury Bond rate. All data are measured quarterly (with the federal funds

rate and the 10 year T-Bond rate averaged over the quarter) from 1953:II to 2006:II and

were the last two years are reserved for evaluation purposes only. With these data, we then

construct two-year (eight-quarters) ahead forecasts by direct forecasts. The lag length of the

projections was automatically selected to be six by AICC .

Figure 3 displays these forecasts along with the actual realizations of these economic

variables, conditional and marginal 95% confidence bands, and 95% Scheffé bands. Several

results deserve comment. First, the 95% Scheffé bands are more conservative and tend to fan

out as the forecast horizon increases. Second, the 95% conditional bands are considerably

narrower in all cases but they are meant to capture the uncertainty generated by that period’s

shock, not the overall uncertainty of the path. Third, our simple exercise results in projections

for output and inflation that are more optimistic than the actual data later displayed. As

a consequence, our forecast for the federal funds rate is more aggressive (after two years

we would have predicted the rate to be at 5.5% instead of 5.25%) although the general

pattern of interest rate increases is very similar. Not surprisingly, the 10 year T-Bond rate

is also predicted to be higher than it actually was although consistent with a higher inflation

premium.

At this point, a forecast report may include other experiments that allow the reader

to assess the internal coherence of the exercise. As an illustration, we experimented with

choosing a more benign inflation path (perhaps because the end of major military operations

in Iraq portended more stability in oil markets would be forthcoming or other factors that

may be difficult to quantify within the model). Along these lines, we experimented with a
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path for inflation that tracks the lower 95% conditional confidence band so that inflation is

predicted to be at 3.4% (rather than at 3.8%) after two years. Of course, this is a completely

arbitrary choice — it is not based on any information coming from the data — but this is

precisely the objective: to stress the forecasting exercise locally along a direction that differs

from that originally predicted but that does not stray too far from the historical experience.

The results of this experiment are reported in Figure 4. We remark that this alternative

path is very conservative: theWald distance between the alternative and the original inflation

forecast path is 29% in probability units, suggesting that such an experiment is well within the

experience observed in the historical sample. In all cases, the exogeneity metric indicates that

the paths for output, the federal funds rate and the 10-year T-Bond rate are not exogenous

to variations in the path of inflation, as might have been expected a priori on economic

grounds.

Interestingly, the forecasts obtained by conditioning on this alternative path for inflation

are remarkably close to the actual data later observed. In particular, the path of predicted

increases in the federal funds rate is virtually identical to the actual path observed, whereas

the path of the 10 year T-Bond rate is mostly within the 95% conditional bands. The most

significant difference was a slight drop in output after one year to a 3% growth rate that

in the conditional exercise was predicted to be closer to 3.5%, but otherwise both paths

seem to reconnect at the end of the two year predictive horizon. Obviously, we are not

speculating that this alternative scenario reflected the Federal Reserve’s view on inflation at

the time — ours is not a statement about actual behavior. Rather, it serves to illustrate how

staff forecasters could have formally presented small-scale alternative assumptions about the

27



paths of some of the variables in the forecasting exercise and their effect on the predictions

made about the paths of other variables in the system.

6 Conclusions

Error bands around forecasts summarize the uncertainty the professional forecaster has about

his predictions and are an elementary tool of communication. When forecasts are generated

over a sequence of future periods — a path forecast — this paper shows that error bands should

be derived as a simultaneous confidence region. The common practice of building error bands

from the marginal distribution of each point forecast does not provide appropriate probability

coverage; is a misleading representation of the set of possible paths the predicted variable

may take; and should therefore be abandoned.

This paper provides a satisfactory solution to the problem of graphically summarizing the

range of possible paths is based on an application of Scheffé’s (1953) S-method of simulta-

neous inference; the realization that the Cholesky decomposition orthogonalizes the forecast

path’s covariance matrix by projecting each forecast on to its immediate past; and designing

a testing procedure that controls the overall variation in the path with the Mahalanobis

(1936) distance to ensure each individual point forecast is internally consisten with the path

as a whole.

The result is a set of bands (that we call Scheffé bands) which balance the family-wise

error rate (the probability that one or more elements of the path will lie outside the bands)

with a measure of the maximal joint variation based on the simultaneous Wald score (the

probability that, jointly, the elements of the path are “close” in probability distance units).

Monte Carlo experiments demonstrate that Scheffé bands provide approximately correct
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probability coverage under either of these measures whereas marginal bands or bands based

on Bonferroni’s procedure fail in one or both metrics, often quite substantially.

When path forecasts are reported for more than one variable, another way to evaluate

the properties of the forecasting exercise is to examine that the path forecasts across different

variables are internally consistent. The coherence of the forecasting exercise can be analyzed

by examining alternative scenarios — a common feature in many forecast reports. To ensure

that the alternative scenarios do not stress the predictive model over regions where the

sample provides no training, we provide a simple Wald score that measures the probability

distance to the conditional mean path. In addition, the Wald score can be used to measure

the sensitivity of each variable in the system to the set of alternative paths.

The basic statistical principles discussed in this paper suggest a number of intriguing

research directions. In a sequel to this paper, we investigate ways in which predictive ability

measures and statistics can be extended to path forecasts. It is well known that, relative

to simple specifications, more elaborate models tend to predict well in the short-run and

poorly in the long-run. Instead, we are interested in assessing a model’s performance with

respect to its ability to predict general dynamic patterns even at the cost of imprecision in

specific point forecasts. Hence, we are developing measures based on the Mahalanobis (1936)

distance alternative to the commonly used MSFE, which are based on the Euclidean distance

instead. The new measures integrate the correlation patterns in a path forecast, and serve

as the basis to construct tests of predictive ability along the lines of Giacomini and White

(2006) based on multivariate Wald scores.
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7 Appendix

We begin by stating our assumptions on the DGP described in Section 3 to which the reader

is referred for any doubts about the notation.

Assumption 1: Suppose the K-dimensional vector of weakly stationary variables, yt has

a Wold representation given by

yt = μ+
∞X
j=0

Φ0jut−j , (20)

where the moving-average coefficient matrices Φj are of dimension k×k, and we assume

that:

(i) E (ut) = 0; and ut are i.i.d. and Gaussian

(ii) E (utu0t) = Σu <∞.

(iii)
P∞
j=0 ||Φj || <∞ where ||Φj ||2 = tr

³
Φ0jΦj

´
is the equivalent of the Euclidean L2 norm

for matrices and Φ0 = Ik.

(iv) det {Φ (z)} 6= 0 for |z| ≤ 1 where Φ (z) =P∞
j=0Φjz

j .

Then the process in (20) can also be written as an infinite VAR process (see, e.g. Ander-

son, 1994),

yt =m+
∞X
j=1

Ajyt−j + ut (21)

such that,

(v)
P∞
j=1 ||Aj || <∞.

(vi) A (z) = Ik −
P∞
j=1Ajz

j = Φ (z)−1 .
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(vii) det {A (z)} 6= 0 for |z| ≤ 1.

Assumption 1 includes the class of stationary vector autoregressive moving average,

VARMA(p, q) processes as a special case. Lewis and Reinsel (1985) derive conditions under

which a finite order VAR will provide consistent and asymptotically normal estimates of the

p original autoregressive coefficient matrices Aj in expression (21). We will use this result

momentarily and extend it for local projections when deriving the asymptotic distribution of

the forecast path. The i.i.d. assumption could be relaxed to allow for heteroskedasticity so

that the consistency and asymptotic normality results in Lewis and Reinsel (1985) are derived

with appropriate laws of large numbers and central limit theorems for martingale difference

sequences (m.d.s.) under more general mixing conditions, but these are not explored here.

We prefer to trade-off some sophistication for clarity to illustrate the more important points

we discuss below. Similarly, the assumption of Gaussian errors could be relaxed, but then

the distribution of the forecast errors would no longer be Normal and should be obtained by

means of simulation methods, see e.g. Garratt et al. (2003).

Assumption 2: If {yt} satisfies conditions (i)-(vii) in assumption 1 and:

(i) E |uitujturtult| <∞ for 1≤ i, j, r, l ≤ k.

(ii) p is chosen as a function of R such that

p3

R
→ 0 as R, p→∞.

(iii) p is chosen as a function of R such that

p1/2
∞X

j=p+1

||Aj ||→ 0 as R, p→∞.
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Then, a summary of results shown by Lewis and Reinsel (1985), Lütkepohl and Poskitt

(1991) and Jordà and Kozicki (2007) are contained in the following corollary.

Corollary 2 Given assumptions 1 and 2, the VAR(p) and pth order local projections are
consistent and asymptotically normal, specifically:

(a) bAj p→ Aj ; bAhj p→ Ahj and bAh1 p→ Φh.

(b)
q

R−p−h
p vec

³ bA (p)−A (p)´ d→ N (0,Σa) where Σa = Γ−1p ⊗Σu

(c)
q
R−p−h

p vec
³ bA (p, h)−A (p, h)´ d→ N (0,Σα) where Σα = Γ

−1
p ⊗Ωh and Ωh = Φ (Ih ⊗ Σu)Φ0

where

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IK 0 ... 0

Φ1 IK ... 0

...
... ...

...

Φh−1 Φh−2 ... IK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(d) Let bu (p)t ≡ yt − bm−Pp

j=1
bAjyt−j so that bΣu (p) = (R− p)−1PR

t=1 bu (p)t bu (p)0t then
√
R
³bΣu (p)− Σu´ → N (0,ΩΣ) where ΩΣ is the covariance matrix of the residual

covariance matrix.

Several results deserve comment. Technically speaking, condition (ii) in assumption 2

is required for asymptotic normality but not for consistency, where the weaker condition

p2/R→ 0, R, p→∞ is sufficient. Results (a)-(c) show that estimators of truncated models

are consistent and asymptotically normal. Result (d) is useful if one prefers to rotate the

vector of endogenous variables yt when providing structural interpretations for the forecast

exercise. Here though, we abstain of such interpretation and provide the result only for

completeness.
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We find it convenient to momentarily alter the order of our derivations and begin by

examining forecasts from direct forecasts first, since these are linear functions of parameter

estimates and hence can be obtained in a straightforward manner.

First notice that bYτ (H) = bAXτ ,p and hence

∂vec
³bYτ (H)´

∂vec
³bA´ =

∂vec
³bAXτ ,p

´
∂vec

³bA´ =
¡
X 0

τ ,p ⊗ IKH
¢

KH×K2Hp+KH

, (22)

which combined with corollary 1(c) results ins
R− p−H

p

³
vec

³bA−A´´ d→ N (0,ΣA) (23)

ΣA
K2Hp+KH×K2Hp+KH

= Γ−1p ⊗ ΩH ; ΩH
KH×KH

= Φ (IH ⊗ Σu)Φ0

Putting together expressions (17), (18), (22) and (23), we arrive at the following corollary.

Corollary 3 Under assumptions 1 and 2 and expressions (18), (17), (22) and (23), the
asymptotic distribution of the forecast path generated with the local projections approach
described in assumption 1 iss

R− p−H
p

vec
³bYτ (H)− Yτ ,H |yτ ,yτ−1, ...´ d→ N (0;ΞH) (24)

ΞH =

½
p

R− p−HΩH +ΨH
¾

ΩH = Φ(IH ⊗ Σu)Φ0
ΨH = (X 0

τ ,p ⊗ IKH)
£
Γ−1p ⊗ ΩH

¤
(Xτ ,p ⊗ IKH)

In practice, all population moments can be substituted by their conventional sample

counterparts.

We now return to the more involved derivation of the asymptotic distribution of the

forecast path when the forecasts are generated by the VAR(p) in expression (13). For this

purpose, we find it easier to work with each element of the vector bYτ (H) individually, so
33



that we begin by examining the derivation ofs
R− p−H

p
vec (byτ (h)− yτ (h) |yτ ,yτ−1, ...) d→ N (0;Ψh,h)

Ψh,h =
∂vec (byτ (h))
∂vec

³ bA (p)´Σa∂vec (byτ (h))∂vec
³ bA (p)´

where we remind the reader that from corollary 1(b), Σa = Γ−1p ⊗Σu. In general, notice that

Ψi,j =
∂vec (byτ (i))
∂vec

³ bA (p)´Σa ∂vec (byτ (j))∂vec
³ bA (p)´

which is all we need to construct all the elements in the asymptotic covariance matrix of

bYτ (H) , namely ΨH . An expression for byτ (h) generated from the VAR(p) in expression (13)

can be obtained as

byτ (h) = SBhXτ ,p

where B simply stacks the VAR(p) coefficients in companion form and S is a selector matrix,

both of which are

B
Kp+1×Kp+1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 ... 0 0

m A1 A2 ... Ap−1 Ap

0 IK 0 ... 0 0

0 0 IK ... 0 0

...
...

... ...
...

...

0 0 0 ... IK 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

S
K×Kp+1

= ( 0
K×1

, IK
K×K

, 0K
K×K

, ..., 0K
K×K

).

Therefore, notice that

∂vec (byτ (h))
∂vec

³ bA (p)´ = ∂vec
¡
SBhXτ ,p

¢
∂vec

³ bA (p)´ =
h−1X
i=0

X 0
τ ,p(B

0)h−1−i ⊗Πi, Πi = SB
iS0.
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The following corollary characterizes the asymptotic distribution of VAR(p) generated fore-

casts paths.

Corollary 4 Under assumptions 1 and 2, the asymptotic distribution of the forecast pathbYτ (H) generated from the VAR(p) in expression (13) is given bys
R− p−H

p
vec

³bYτ (H)− Yτ ,H |yτ ,yτ−1, ...´ d→ N (0;ΞH) (25)

ΞH =

½
p

R− p−HΩH +ΨH
¾

ΩH = Φ(IH ⊗ Σu)Φ0

Ψi,j =
p

R− p−H
i−1X
k=0

j−1X
s=0

E(X 0
τ ,p(B

0)i−1−kΓ−1p B
j−1−sXτ ,p)⊗ΠkΣuΠ0s

=
p

R− p−H
i−1X
k=0

j−1X
s=0

tr((B0)i−1−kΓ−1p B
j−1−sΓp)ΠkΣuΠ0s

In practice all moment matrices can be substituted by their sample counterparts as usual.
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Table 1. Coverage Rates of Marginal, Bonferroni, and Scheffé Bands in Stock and Watson’s 
(2001) VAR(4). Forecasts Obtained with VARs 

Forecast Horizon: 1 
    Nominal Coverage: 68%  Nominal Coverage: 95% 
    FWER  WALD  FWER  WALD 
    Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef. 

T=100  P  67.5  67.5  67.5  67.5 67.5 67.5 93.8 93.8 93.8  93.8  93.8 93.8
  UN  69.5  69.5  69.5  69.5 69.5 69.5 95.8 95.8 95.8  95.8  95.8 95.8
  FF  68.4  68.4  68.4  68.4 68.4 68.4 94.6 94.6 94.6  94.6  94.6 94.6
T=400  P  66.9  66.9  66.9  66.9 66.9 66.9 93.6 93.6 93.6  93.6  93.6 93.6
  UN  69.7  69.7  69.7  69.7 69.7 69.7 96.0 96.0 96.0  96.0  96.0 96.0
  FF  67.8  67.8  67.8  67.8 67.8 67.8 94.2 94.2 94.2  94.2  94.2 94.2
Forecast Horizon: 4 
    Nominal Coverage: 68%  Nominal Coverage: 95% 
    FWER  WALD  FWER  WALD 
    Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef. 

T=100  P  32.8  78.7  58.4  20.5 70.2 67.1 85.6 95.9 92.8  80.3  95.0 95.4
  UN  43.6  82.4  63.8  15.3 60.8 67.5 88.1 96.5 93.8  72.0  90.8 94.1
  FF  37.0  79.7  61.0  15.8 65.3 68.0 86.4 95.8 93.7  76.1  92.5 94.6
T=400  P  29.8  76.7  56.7  21.5 73.0 67.0 83.9 95.5 92.4  82.9  96.8 96.6
  UN  43.8  83.2  64.2  15.4 62.2 68.6 88.7 97.2 94.2  73.0  91.9 95.1
  FF  36.3  79.5  60.8  15.3 65.8 68.3 86.4 96.1 93.4  76.4  92.9 94.9
Forecast Horizon: 8 
    Nominal Coverage: 68%  Nominal Coverage: 95% 
    FWER  WALD  FWER  WALD 
    Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef. 

T=100  P  16.7  81.8  56.2  1.5 50.4 63.1 78.7 95.8 91.8  43.9  86.6 93.7
  UN  27.9  84.9  63.2  2.1 58.6 65.7 82.0 96.6 93.7  52.0  91.3 95.6
  FF  24.4  84.0  63.0  1.9 50.8 66.1 80.9 96.3 93.6  44.0  87.4 95.4
T=400  P  13.5  79.9  54.5  1.4 52.5 65.4 77.0 95.7 91.8  45.7  90.6 96.4
  UN  27.6  85.8  63.8  1.9 60.2 67.8 82.8 97.2 94.2  53.0  93.4 96.9
  FF  23.5  84.7  62.9  1.8 50.3 68.1 81.4 96.7 93.8  43.1  89.2 96.9
Forecast Horizon: 12 
    Nominal Coverage: 68%  Nominal Coverage: 95% 
    FWER  WALD  FWER  WALD 
    Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef. 

T=100  P  12.4  84.2  57.2  0.2 37.3 61.7 74.2 96.2 91.9  21.5  77.5 92.8
  UN  19.1  85.7  62.1  0.4 66.3 66.1 77.0 96.4 92.3  46.6  93.7 96.1
  FF  15.7  85.0  62.4  0.1 39.9 64.9 76.2 96.4 93.1  22.2  81.3 95.4
T=400  P  9.1  83.3  55.5  0.1 37.0 65.8 72.5 96.6 92.2  19.9  81.4 96.0
  UN  18.2  86.4  63.1  0.2 71.2 69.4 77.2 97.0 93.3  49.7  96.8 97.7
  FF  14.8  85.9  62.5  0.1 40.0 68.4 77.2 97.5 93.6  21.3  84.7 97.7
Notes:  1,000 samples generated on which a VAR is fitted and whose order is selected automatically by AICC. Each 
estimated VAR on these 1,000 samples generates a forecast error variance (which includes estimation uncertainty) for 
the forecast path and hence the sets of bands (marginal, Bonferroni, and Scheffé) used in the analysis. Hence 1,000 
forecast paths from the true DGP are generated and then compared with each set of 1,000 bands to determine the 
appropriate coverage rates. FWER stands for “family‐wise error rate” and simply computes the proportion of paths 
strictly inside the bands. WALD instead is the proportion of forecast paths whose joint Wald statistic relative to the 
forecast, attains a value that is lower than that implied by the Wald statistic for the bands.  
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Table 2. Coverage Rates of Marginal, Bonferroni, and Scheffé Bands in Stock and Watson’s 
(2001) VAR(4). Forecasts Obtained by Direct Forecasts 

Forecast Horizon: 1 
    Nominal Coverage: 68%  Nominal Coverage: 95% 
    FWER  WALD  FWER  WALD 
    Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef. 

T=100  P  67.5  67.5  67.5  67.5 67.5 67.5 93.8 93.8 93.8  93.8  93.8 93.8
  UN  69.5  69.5  69.5  69.5 69.5 69.5 95.8 95.8 95.8  95.8  95.8 95.8
  FF  68.4  68.4  68.4  68.4 68.4 68.4 94.6 94.6 94.6  94.6  94.6 94.6
T=400  P  66.9  66.9  66.9  66.9 66.9 66.9 93.6 93.6 93.6  93.6  93.6 93.6
  UN  69.8  69.8  69.8  69.8 69.8 69.8 96.0 96.0 96.0  96.0  96.0 96.0
  FF  67.9  67.9  67.9  67.9 67.9 67.9 94.2 94.2 94.2  94.2  94.2 94.2
Forecast Horizon: 4 
    Nominal Coverage: 68%  Nominal Coverage: 95% 
    FWER  WALD  FWER  WALD 
    Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef. 

T=100  P  30.5  76.4  55.9  24.9 76.3 68.0 83.8 95.0 91.7  85.4  97.1 96.4
  UN  41.7  80.7  63.1  16.7 63.6 68.7 86.9 95.7 93.6  74.5  92.0 94.8
  FF  34.6  77.2  59.4  18.0 69.2 69.0 84.4 94.7 93.0  79.3  94.2 95.5
T=400  P  29.5  76.3  56.2  22.1 74.0 67.1 83.6 95.3 92.2  83.8  97.1 96.7
  UN  43.3  82.8  64.1  15.6 62.7 68.8 88.4 97.0 94.2  73.6  92.1 95.3
  FF  35.9  79.0  60.5  15.6 66.5 68.4 86.1 95.9 93.7  76.9  93.2 95.1
Forecast Horizon: 8 
    Nominal Coverage: 68%  Nominal Coverage: 95% 
    FWER  WALD  FWER  WALD 
    Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef. 

T=100  P  13.5  78.6  52.9  3.1 65.1 68.2 75.3 94.4 90.0  58.6  93.9 96.0
  UN  25.1  81.2  61.2  3.9 69.7 68.9 78.7 95.2 92.7  63.4  95.1 96.6
  FF  21.1  80.6  60.7  3.3 64.0 70.6 77.3 94.7 92.5  57.4  93.5 96.9
T=400  P  12.8  79.2  53.9  1.6 56.2 66.6 76.3 95.3 91.6  49.2  92.3 96.7
  UN  26.8  84.9  63.5  2.3 62.9 68.5 81.9 96.9 94.1  55.9  94.3 97.2
  FF  22.7  83.8  62.6  2.0 53.2 68.8 80.5 96.4 93.6  45.8  90.6 97.2
Forecast Horizon: 12 
    Nominal Coverage: 68%  Nominal Coverage: 95% 
    FWER  WALD  FWER  WALD 
    Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef.  Marg.  Bonf.  Schef. 

T=100  P  9.3  80.4  52.8  0.7 58.6 69.6 69.3 94.8 89.4  39.4  90.7 95.9
  UN  16.6  82.2  55.7  2.3 83.3 71.2 72.9 94.8 87.3  68.7  97.7 97.1
  FF  12.8  81.1  58.7  0.5 65.0 72.8 71.4 94.6 91.3  45.0  93.7 97.5
T=400  P  8.3  82.2  54.7  0.2 42.5 67.7 71.0 96.2 91.9  24.0  85.5 96.6
  UN  17.3  85.3  62.0  0.3 76.2 70.6 75.9 96.6 92.3  56.0  97.7 97.9
  FF  14.0  85.0  62.0  0.1 45.1 70.2 76.0 97.0 93.4  24.9  87.8 98.1
Notes:  1,000 samples generated on which local projections are fitted and whose order is selected automatically by AICC. 
From each of these 1,000 samples, one obtains the forecast error variance (which includes estimation uncertainty) for the 
forecast path and hence the sets of bands (marginal, Bonferroni, and Scheffé) used in the analysis. Hence 1,000 forecast 
paths from the true DGP are generated and then compared with each set of 1,000 bands to determine the appropriate 
coverage rates. FWER stands for “family‐wise error rate” and simply computes the proportion of paths strictly inside the 
bands. WALD instead is the proportion of forecast paths whose joint Wald statistic relative to the forecast, attains a value 
that is lower than that implied by the Wald statistic for the bands. 
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Table 3. Coverage Rates of Marginal, Bonferroni, and Scheffé Bands in Simple AR(1) Model 

Nominal Coverage Level: 68% 
  Horizon = 1  Horizon = 4 
FWER       
Marg.  68  67.5 67.8  68.5 68.2 27.3 28.3 28.1  34.2 33.2
Bonf.  68  67.5 67.8  68.5 68.2 73.8 77.3 75  79 77.8
Schef.  68  67.5 67.8 68.5 68.2 53 54.3 55.9 62.3 60.6 
WALD       
Marg.  68  67.5 67.8  68.5 68.2 26.3 24.7 20.5  20.6 15.5
Bonf.  68  67.5 67.8  68.5 68.2 83 79 72.6  69.1 61.8
Schef.  68  67.5 67.8 68.5 68.2 67.4 69.2 65.7  68.2 66.6

Nominal Coverage Level: 68% 
  Horizon = 8  Horizon = 12 
FWER       
Marg.  6.8  8.9  9.9  15.4 22.4 1.8 3.6 3.8  6.6 11.6
Bonf.  76.8  76  76.1  79.5 82.8 74.6 75.2 79.4  80.5 85.3
Schef.  42.3  49.6 52.3 59.8 59.3 33.3 42.2 53.4 59.5 59.5 
WALD       
Marg.  8.2  6.2  3.1  2.2 1 3.3 1.7 0.4  0.3 0.1
Bonf.  93  85.4 71.9  62.7 50.7 98 90.6 78  56.1 37.1
Schef.  69.4  68.4 65.9  68.3 69.2 69.2 67.2 69.6  68.5 69.9
 

Nominal Coverage Level: 95% 
  Horizon = 1  Horizon = 4 
FWER       
Marg.  94.7  94.8 95.3  96.2 94.4 82.6 85.9 84.1  86.7 84.2
Bonf.  94.7  94.8 95.3  96.2 94.4 95.2 95.5 95.9  96.6 95.5
Schef.  94.7  94.8 95.3 96.2 94.4 90.4 93.3 93.8 95.2 92.9 
WALD       
Marg.  94.7  94.8 95.3  96.2 94.4 91 87.7 83.3  80.2 74.9
Bonf.  94.7  94.8 95.3  96.2 94.4 99.3 97.9 96.8  96.5 93.1
Schef.  94.7  94.8 95.3 96.2 94.4 98.1 97.2 97  97.5 95.3

Nominal Coverage Level: 95% 
  Horizon = 8  Horizon = 12 
FWER       
Marg.  72.6  70.5 71.2  75 79.4 57.8 59.1 64  69.9 75.7
Bonf.  95.7  95.3 96  92.4 97.6 95.4 95.6 95.3  96.8 97.2
Schef.  87.7  91.7 92.2 95.9 95.2 80.2 87.5 92.2 92.3 93.9 
WALD       
Marg.  89.1  80.3 65.4  56.3 43.7 89.1 72.9 55.8  34.5 18.7
Bonf.  99.9  99.6 97.8  92.4 90 100 99.8 98.8  93.2 81
Schef.  98.6  98.4 97.8  95.9 97.2 99.6 98.4 98.3  97.3 97.3
Notes:  Theoretical values of the forecast error variance (excluding parameter estimation uncertainty) are used to 
construct three sets of bands (marginal, Bonferroni, and Scheffé). Then 1,000 Monte Carlo replications from the DGP are 
generated. FWER stands for “family‐wise error rate” and computes the proportion of paths inside the bands. WALD 
computes the Wald statistic for each path relative to its forecast and computes the proportion whose value is lower than 
the Wald statistic implied by the bands. 
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Figure 1 – 95% Confidence Circumference for Orthogonalized Forecast Path 
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Figure 2. Stock and Watson (2001) OutofSample Forecasts, 8periods Ahead 
 

 
 
 
 
 
 
 
Notes: Out‐of‐sample forecasts for the Stock and Watson (2001) VAR.  Estimation 
sample 1960:I‐2004:IV. Prediction sample 2005:I‐2007:I. Predictions based on 
VAR(4). P stands for inflation (measured by the chain‐weighted GDP price index), 
UN stands for unemployment (measured by the civilian unemployment rate), and FF 
stands for federal funds rate (average over the quarter).   
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Figure 3. 95% Marginal, Scheffé and Conditional Error Bands and Forecast 
 

 
Notes: Estimation sample: 1953:II – 2004:II; out‐of‐sample forecast period: 2004:II 
– 2006:II 
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Figure 4. Forecasts Conditional on Alternative Inflation Path 
 

 
 
Notes: Estimation sample: 1953:II – 2004:II; out‐of‐sample forecast period: 2004:II 
– 2006:II Conditional bands shown for original forecast and for forecasts conditional 
on alternative inflation path 
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